
Università degli Studi di Milano - Bicocca
Scuola di Scienze

Dipartimento di Informatica, Sistemistica e Comunicazione

Corso di laurea in Informatica

Development and evaluation of an
automatic test case generation technique
for Data Loss problems in Android apps

Relatore: Prof.ssa Daniela Micucci

Co-relatore: Dott. Oliviero Riganelli

Relazione della prova finale di:
Claudio Rota

Matricola 816050

Anno Accademico 2018-2019





Acknowledgements

Desidero ringraziare la Prof.ssa Daniela Micucci per avermi dato la possibilità di
svolgere questo progetto di stage. Ringrazio il Dott. Oliviero Riganelli per avermi
seguito durante tutto il progetto e per avermi aiutato con i suoi preziosi consigli.
Un ringraziamento speciale va alla mia famiglia e alla mia fidanzata Cristina, che
mi hanno sempre sostenuto, incoraggiato e sopportato anche nei periodi di stress
e nervosismo.
Un sentito ringraziamento va anche ad Alessandro, Simone, Stefano, Andrea Mi.,
Burt, Matteo e Andrea Ma., miei compagni di corso ed amici fin dal primo anno,
senza i quali questi tre anni non sarebbero stati gli stessi. In particolare, ringrazio
Simone per aver svolto questo progetto insieme a me.





Contents

1 Introduction 1

2 Android applications and Data Loss problems 3
2.1 Introduction to Android activities . . . . . . . . . . . . . . . . . . . 3
2.2 Handling the activity state . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Data Loss problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Pervasiveness of Data Loss problems . . . . . . . . . . . . . . . . . 9

3 State of the art of Android testing 11
3.1 State-of-the-art test case generation

techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.1 Random exploration strategy . . . . . . . . . . . . . . . . . 12
3.1.2 Model-based exploration strategy . . . . . . . . . . . . . . . 12
3.1.3 Systematic exploration strategy . . . . . . . . . . . . . . . . 13

3.2 Data Loss problem detection nowadays . . . . . . . . . . . . . . . . 14

4 Development 17
4.1 The decision of the tool . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Approach overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.2 Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.3 Exploration strategy . . . . . . . . . . . . . . . . . . . . . . 28
4.3.4 Report generation . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Experimental evaluation 35
5.1 Study setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Experimentation work . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.1 Activity coverage . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.2 Data Loss problems . . . . . . . . . . . . . . . . . . . . . . . 43

i



CONTENTS

5.3.3 Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Conclusions 51

ii



List of Figures

2.1 Activity lifecycle scheme . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 A Data Loss failure that manifests itself in an application crash in

Easy xkcd v6.0.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 A Data Loss failure that manifests itself in the disappearance of a

Dialog in Diary v1.26 . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 A Data Loss failure that manifests itself in the appearance of a

Dialog in CycleStreets v3.5 . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 A Data Loss failure that manifests itself in the reappearance of an

EditText with a wrong content in BeeCount v2.7.4 . . . . . . . . . . 9

4.1 Example of the GUI model . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 A FillAllEvent writes inside every EditText and presses every Tog-

gleButton and RadioButton in OpenVPN for Android v0.7.5 . . . . 23
4.3 A ScrollEvent from the bottom to the top in Calendar Notifications

v3.14.159 shows the views that first were hidden . . . . . . . . . . . 24
4.4 A ScrollEvent from the leftmost side to the rightmost side opens a

NavigationDrawer in Equate v1.6 . . . . . . . . . . . . . . . . . . . 24
4.5 The list of Python dictionaries describing the GUI state of the ac-

tivity shown in Figure 4.2a. . . . . . . . . . . . . . . . . . . . . . . 25
4.6 A Data Loss failure that can be detected only by using the property-

based oracle in MALP 3d31062 . . . . . . . . . . . . . . . . . . . . 26
4.7 AData Loss failure that can be detected only by using the screenshot-

based oracle in Vespucci Osm Editor v10.2 . . . . . . . . . . . . . . 28
4.8 Example of how events are stored inside an AbstractState . . . . . . 28
4.9 DataLossPolicy diagram . . . . . . . . . . . . . . . . . . . . . . . . 30
4.10 Output directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.11 Example of report.html of Book Catalogue v5.2.0-RC3a . . . . . . . 33

5.1 Trend of average activity coverage (in %) to varying of the ε param-
eter on Equate v1.6, Calendar Notifications v3.14.159 and Twidere
v3.7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



LIST OF FIGURES

5.2 The JSON file used to test OctoDroid v4.0.3 . . . . . . . . . . . . . 38
5.3 The shell command used to start the execution of DroidBot [13] on

the appname.apk app . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 A false positive detected in World Clock & Weather v1.8.6 . . . . . 39
5.5 Activity coverage reached for each app . . . . . . . . . . . . . . . . 42
5.6 Percentage of Data Loss failures labelled as benchmark or online

detected for each app . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.7 Classification of the undiscovered Data Loss problems labelled as

benchmark or online . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.8 Number of buggy activities for each app . . . . . . . . . . . . . . . 46
5.9 Number of Data Loss failures labelled as true positives detected for

each app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.10 Percentage of Data Loss failures labelled as true positives detected

by every oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.11 Percentage of Data Loss failures labelled as false positives detected

by every oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.12 Number of the Data Loss failures labelled as false positives detected

for each app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

iv



List of Tables

4.1 High-level analysis of the main state-of-the-art test input generation
tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Results of the experiments . . . . . . . . . . . . . . . . . . . . . . . 41

v





CHAPTER 1

Introduction

Android apps, like all software applications, should be tested adequately to ensure
a certain level of quality. Unfortunately, testing is usually one of the software
development phases in which less time and money are invested. As a matter of
fact, developers are used to implement test cases that are mainly focused on ex-
pected application behaviours, thus failing to consider less common events such as
a home-button press or a sudden change in the screen orientation. These untested
behaviours are often the cause of unexpected outcomes. As a result, these test
cases are not effective on detecting application failures that may be found in real
situations by the end users. The large number of negative comments in the Google
Play Store indicates that a significant amount of applications are buggy.
Since Android applications are event-driven systems, in which the execution flow
of the program is determined by events, it is often hard to perform tests on them.
For this reason, testing automation for Android apps has become an attraction
for many researchers and several tools have been developed with the purpose of
helping Android developers to test their apps. These tools allow to explore the
behaviours of the app automatically using different strategies, heuristics and input
generation techniques in order to detect application crashes. However, this is their
limitation, since there are software failures that do not always manifest themselves
in crashes of the entire app, such as Data Loss failures.
Data Loss failures occur when the variables of the application lose their values
after a stop-start event, which is an event that first stops the execution of the
app and then resumes it from the same point it was stopped. If an app suffers
from these problems and such events take place, the users may lose the data they
have just entered, ruining the usability of the app. They are usually introduced
by developers because they do not implement correctly the logic necessary for
preserving and restoring the application state when these events happen. Since
stop-start events occur very often, Android apps affected by Data Loss faults may
manifest these failures very frequently, negatively impacting the user experience,
which is very important for the success of the application.

1



CHAPTER 1. INTRODUCTION

Nowadays, there are no specific tools for detecting these types of failures. To
address this problem, this thesis work presents an extension of an existing state-
of-the-art test case generation tool with a novel technique able to detect Data
Loss problems in Android apps. This technique analyzes the application under
test automatically, using a model-based exploration approach, and heuristically
generates stop-start events in conjunction with specific oracles. More in detail,
the exploration strategy is based on a GUI model, which is a non-deterministic
finite automaton (NFA) with abstract states as states, representing the app pages,
and events as transitions between them. During the exploration, the events are
triggered from the abstract states with different probabilities in order to favour
event not yet triggered. By default, a specific event may not be generated for the
second time until all the others are triggered, but developers can adjust such prob-
ability. Whenever a new abstract state is found, a special event sequence, which
tries to maximize the Data Loss failure revelation and includes a stop-start event,
is injected and the presence of Data Loss problems is verified using oracles. Since
a correctly handled stop-start event should not modify the activity state at all,
the oracles check whether the activity GUI states before and after such stop-start
events are the same.
An evaluation study conduced on 48 buggy Android applications of the bench-
mark provided by Riganelli et al. [1] demonstrates the effectiveness of the afore-
mentioned technique in detecting Data Loss failures. In fact, this study shows
that such technique is able to detect 82 out of 110 Data Loss problems included
in the benchmark, 36 out of 58 Data Loss problems already reported to the app
developers and many others not yet known.
This thesis is the result of joint work with Simone Paolo Mottadelli and it has
the purpose of showing both the development and the evaluation work carried out
for this technique. It is structured as follows: chapter 2 characterizes the Data
Loss problem and its causes, showing different examples from real world applica-
tions; chapter 3 discusses the state of the art of Android testing, focusing itself
on both the available state-of-the-art test case generation tools for Android apps
and how Data Loss problems are dealt with nowadays; chapter 4 shows the steps
followed for the integration of the novel technique into an existing tool, providing
an overview of its functioning and describing its implementation; chapter 5 reports
the results of the evaluation of this technique, showing its abilities in both explor-
ing the applications under test and detecting Data Loss problems, and, finally,
chapter 6 concludes this thesis briefly summarizing the contents of this work and
mentioning future improvements.

2



CHAPTER 2

Android applications and Data Loss problems

In the last decade, mobile applications have gained importance and popularity for
almost everyone all over the world. People use these applications to perform a
very large amount of tasks like reading e-mails, surfing the net, listening to music,
making payments and so on. They use apps both for fun and for work, entrusting
them with confidential data such as work e-mails and banking passwords.
Among these mobile applications, in the last few years, Android apps have ex-
perienced a significant increase of popularity. At the beginning of 2016 existing
Android apps in the Google Play Store were about 2 million and, at the end of
2017, that number increased to 3.5 million [2].
This chapter presents Android activities and provides an overview of their life
cycle, emphasizing the importance of preserving the activity states in order to
correctly handle stop-start events. Later, it also presents the concept of Data
Loss problems, specifying what they are, how they manifest themselves and how
pervasive they are in the world of Android applications.

2.1 Introduction to Android activities
Android apps are composed by activities, which implement their user interface
(UI). Generally, an app can have more than an activity, each of which provides
cohesive functionalities to the user and represents a full-screen window of the app
containing widgets, such as Buttons or EditTexts, through which the users can
interact with the application. These widgets can be tied to callback methods,
which are invoked when a corresponding event is triggered, and are characterized
by multiple properties like the position in coordinates on the screen, the class
(e.g., TextView), whether they are clickable or not and so on. In fact, Android
applications are event-driven systems and they are based on callback methods
invoked by the ART, the Android Runtime Environment, in response to particular
events. For example, when the user presses a button, the associated callback
method is called and its code is executed.

3



CHAPTER 2. ANDROID APPLICATIONS AND DATA LOSS PROBLEMS

All the activities run in the main thread of the app and each of them has its
own life cycle controlled through six fundamental callback methods, as shown
in Figure 2.1. The onCreate() callback method is called when the activity is

Figure 2.1: Activity lifecycle scheme

created for the fist time and thus enters the Created state. This callback method
should contain statements to initialize the main resources used by the activity
and takes a Bundle [3] object in input to restore a previously saved state, if the
activity had already been created. Whenever the execution of this method ends,
the onStart() callback method is invoked and the activity enters the Started state.
The onStart() callback method should initialize the GUI content of the activity.
When onResume() callback method is called, the activity enters the Resumed
state, goes to the foreground and starts interacting with the user. The activity
remains in this state until it loses the focus and this happens, for example, when

4



CHAPTER 2. ANDROID APPLICATIONS AND DATA LOSS PROBLEMS

the user presses the “home” button or when an incoming call is received. In
these cases, the onPause() callback method is invoked and the activity enters the
Paused state. This method should release all those system resources that might
be acquired by others when the activity is no longer in the foreground, such as
camera sensors. The activity remains in this state either until it does not go back
to the foreground or it becomes completely invisible to the user. In the latter
case, the onStop() callback method is invoked and the activity enters the Stopped
state. This method should complete heavy operations that were not performed
in the previous state. The activity remains in this state until either it does not
go back to the foreground or it terminates its execution. In the second case, the
onDestroy() callback method is called and the activity enters the Destroyed state.
Here, all the remaining resources not yet deallocated during the executions of the
onPause() and the onStop() callback methods should be finally released.
The entire lifecycle of an activity begins when the onCreate() callback method is
called by the ART and it ends after the execution of the onDestory().
These methods should be implemented by developers in order to guarantee that an
activity works properly and to perform critical tasks, such as releasing resources.
Since the available resources on mobile devices are limited, the Android operating
system may kill the process of the application to free up memory. The likelihood
that such event occurs depends on the state in which the activity resides and this
probability is even higher if the activity is in the Stopped or Destroyed states.

2.2 Handling the activity state
During their entire lifecycle, a destroyed activity might be recreated in the future.
This could happen both for actions performed by the users and for system needs.
In fact, by default, the system automatically destroys and recreates the foreground
activity in correspondence of a configuration change, because the activity needs to
be adapted to the new configuration. For instance, when the device screen is ro-
tated from portrait to landscape or when the language of the device is changed, all
the widgets on that activity have to be adapted. In other contexts, the operating
system is committed to preserve the activity state in the RAM, but sometimes this
is impossible because more memory is needed to execute new tasks. For example,
when the user navigates away from an activity, the Android operating system may
kill that activity, destroying the application process in which it resides, and later
recreate it when the user navigates back to it. Such events require mechanisms for
saving and restoring the activity state to deal with the user expectations.
Preserving and restoring an activity state, which includes both its GUI state and
its internal state, is a fundamental part for the user experience. The GUI state
corresponds to the hierarchical structure of the widgets of an activity, that is, the
way widgets are logically organized in the GUI, as well as to the properties of
the widgets, such as the contents inside EditTexts. Instead, the internal state is
constituted by the set of values assumed by its member variables.
There are contexts in which the activity state is expected to remain unchanged,
and others in which it is expected to be cleared. For instance, if an activity is de-
stroyed voluntarily, such as by pressing the “back” button or by killing the entire

5



CHAPTER 2. ANDROID APPLICATIONS AND DATA LOSS PROBLEMS

app from the “Settings” app, the users think they have permanently navigated
away from the activity and, hence, they do not expect to find the same GUI state
if they return to that particular activity. Instead, in other contexts, for example
when the “home” button is pressed or when the user switches among apps, the
users expect to find the GUI state to remain unaltered.
Although the activity GUI state is preserved automatically by the ART under
certain hypothesis (e.g., the widgets have the android:id property), this does not
happen with its internal state. For this reason, Android developers have the re-
sponsibility to guarantee that the entire state is saved and restored throughout its
destruction and recreation. This can be achieved either by overriding the callback
methods onSaveInstanceState() and onRestoreInstanceState(), in order to serialize
and deserialize small information on the disk, by using ModelView objects, which
are used to save more complex objects in memory, or by using a local persistent
storage, such a database or a file.
Since the usage of these mechanisms is more a good practice rather than an obliga-
tion, Android developers might not use them, making their applications unable to
correctly handle events that require the destruction and the recreation of activities.

2.3 Data Loss problems
Android applications may be subjected to many stop-start events. A stop-start
event requires stopping the execution of the app and later resuming it from the
same point it was stopped. More precisely, it is defined as a sequence of events that
makes the involved activity enter the Stopped state and then the Resumed state,
regardless of the states crossed by the activity. For example, when an incoming
call is received, the foreground activity goes to the Stopped state and it waits there
until the call ends, thus returning to the Resumed state.
As introduced in section 2.2, there are contexts in which the involved activity is
destroyed and recreated by default and others in which this might happen depend-
ing on system needs. In both cases, an incorrect management of these events can
lead to unexpected behaviors due to Data Loss problems.
More in detail, Data Loss problems manifest themselves either in an inconsistency
between activity GUI states or in application crashes, according to Riganelli et
al. [4]. In fact, if the mechanisms for saving and restoring the activity state are
not correctly used, when a stop-start event occurs the member variables of that
activity may be reassigned to their default values, such as null or 0, with the
consequence that unhandled runtime exceptions may be thrown, causing the app
to crash suddenly (Figure 2.2). Since such problems may occur only when the
activity is in particular states, it is very difficult to generate test event sequences
able to reveal them.
According to Amalfitano et al. [5], activities affected by Data Loss problems can
show one ore more of the following GUI failures:

• GUI objects can disappear (Figure 2.3);

• GUI objects can appear (Figure 2.4);

6



CHAPTER 2. ANDROID APPLICATIONS AND DATA LOSS PROBLEMS

• GUI objects can be displayed with wrong values (Figure 2.5).

These behaviours can be considered as Data Loss failures, except in those cases in
which the developer has voluntarily programmed the app to behave in that way.
The figures 2.2, 2.3, 2.4 and 2.5 show four motivating examples of Data Loss
failures observed after an orientation change. More in detail, Figure 2.2 represents
the worst scenario in which the application crashes. Figure 2.3 shows a Dialog
disappearing from the GUI, while Figure 2.4 shows a Dialog appearing. Finally,
Figure 2.5 shows an EditText losing the data entered by the user.
Manifestations of Data Loss problems negatively affect the user experience and the
usability of the app: the user is forced to reinsert the data lost after a stop-start
event or to restart completely the application because it has crashed.

(a) Before a stop-start event

(b) After a stop-start event

Figure 2.2: A Data Loss failure that manifests itself in an application crash in
Easy xkcd v6.0.4

7



CHAPTER 2. ANDROID APPLICATIONS AND DATA LOSS PROBLEMS

(a) Before a stop-start event

(b) After a stop-start event

Figure 2.3: A Data Loss failure that manifests itself in the disappearance of a
Dialog in Diary v1.26

(a) Before a stop-start event

(b) After a stop-start event

Figure 2.4: A Data Loss failure that manifests itself in the appearance of a Dialog
in CycleStreets v3.5

8



CHAPTER 2. ANDROID APPLICATIONS AND DATA LOSS PROBLEMS

(a) Before a stop-start event

(b) After a stop-start event

Figure 2.5: A Data Loss failure that manifests itself in the reappearance of an
EditText with a wrong content in BeeCount v2.7.4

2.4 Pervasiveness of Data Loss problems
Data Loss faults can be introduced in an Android application very easily, hence,
it is very common to find a large number of apps affected by them.
In accordance with Riganelli et al. [4], a Data Loss fault can be introduced in the
code of an Android app in three ways:

• By a missing implementation of the callback methods provided by the An-
droid framework. In this case, the developers forget to override onSave-
InstanceState() and onRestoreInstanceState(), only relying on their default
implementation and omitting to save and restore additional information of
the activity state;

• By an incorrect overriding of the callback methods provided by the Android
framework;

• By upgrades of the Android framework. Here, the provided callback methods
are correctly overridden by the developers, but the continuous upgrades of
the Android framework might make the application unable to handle stop-
start events anyway.

Adamsen et al. [6] performed a similar study subjecting four Android applications
to stop-start events in order to detect any failures. They concluded that all of the
tested apps manifested a lot of failures, some of which could be considered Data
Loss failures.

9



CHAPTER 2. ANDROID APPLICATIONS AND DATA LOSS PROBLEMS

Finally, a recent study conducted by Riganelli et al. [1] underlines even more how
pervasive Data Loss problems are. In particular, in the sample of applications
used for their investigation, which was composed by 428 Android apps, 82 of them
were affected by at least a Data Loss problem, which was nearly a fifth of their
sample. Their study shows that these problems increase considerably the technical
debt: the faults studied in their investigation would have required from one day
to almost a year to be fixed.
These studies show both a great involvement by researchers in this field and a
large diffusion of Data Loss problems in the world of Android applications.

10



CHAPTER 3

State of the art of Android testing

Like all software applications, Android apps should guarantee different qualities
and meet their specifications. To achieve this, mobile apps need to be thoroughly
tested, but, since they are event-driven systems, testing an Android app could
be tricky and tedious. Android developers are used to writing test cases using
testing automation frameworks or tools like JUnit [7], Appium [8], Robotium [9]
or Espresso [10]. However, these still require a little effort from the developers,
because, for example, they have to set up the testing environment, create test
event sequences and design oracles.
This chapter provides an overview of both the main exploration approaches and
the main tools available in the state of the art of Android testing. Finally, it
presents how Data Loss problems are addressed nowadays.

3.1 State-of-the-art test case generation
techniques

Android automation testing has become a research area of interest for many re-
searchers, who developed different tools and techniques with the purpose of testing
Android applications more efficiently, reducing considerably manual efforts in de-
signing test cases and oracles. To reach this goal, these tools are able to generate
input sequences, such as clicks or scrolls, in order to automatically explore the
behaviours of the application under test. They aim to maximize both the code
coverage and the number of application crashes during their exploration.
The currently available state-of-the-art test input generation tools mainly differ
for their exploration strategy, according to Choudhary et al. [11]. In fact, these
can be classified into:

• Random exploration strategy;

• Model-based exploration strategy;

11



CHAPTER 3. STATE OF THE ART OF ANDROID TESTING

• Systematic exploration strategy.

This section mentions the state-of-the-art test input generation tools analyzed for
the decision of the tool to extend presented in section 4.1, without considering the
others available in the research field.

3.1.1 Random exploration strategy
The random exploration strategy consists in the exploration of the app under test
using user events and simple system events (e.g., SMS notifications) without any
logic. However, this approach might be inefficient because the system can react
only to a few of them and it does not consider the redundancy of the events
already generated. In contrast, the tools that use this strategy are more effective
in stressing the application rather then in maximizing its code coverage. They stop
their explorations either when the application crashes or when they have reached
the fixed number of events to be generated.
Monkey [12], the tool developed by Google, implements a random strategy and
it is able to generate both user and system events. This tool allows the users to
set the probability of each type of event to be triggered. The exploration strategy
can also be restricted to a set of packages and it stops whenever the application
crashes or the fixed number of events is reached. Since it is integrated in the
Android SDK, it is one of the most used tool in industry, due also to its ease of
use and its applicability to a vast category of apps.

3.1.2 Model-based exploration strategy
The model-based exploration strategy relies on GUI models, which are typically
finite state machines having abstractions of activities as states and events to be
triggered as transitions among states. These GUI models can either be built stati-
cally, analyzing both the source code and other files of the application, or dynam-
ically, during the exploration of the app. The tools that use this strategy differ
both in how they define the GUI model and in how they use it to generate events.
Since this strategy can limit the number of redundant inputs, it should have better
performance in terms of code coverage than the random one. Moreover, these tools
stop their exploration either when all the events from all the discovered states con-
duce to states already visited, when a determined number of iterations is reached
or when the allocated time for their execution ends. However, as Choudhary et al.
[11] underline, the representation of the GUI states might not be sufficient because
some events can change the internal application state without affecting the GUI,
thus failing to consider those events relevant for the exploration.
DroidBot [13] is a tool that uses this exploration strategy. It is highly pro-
grammable and lightweight because it allows users to define their own exploration
policies and it does not require any instrumentation of the app. As default, its
GUI model is constructed on the fly during the exploration of the app and it ex-
plores its GUI model using depth-first search. More specifically, the GUI model
is a direct graph in which the nodes are represented by the state of the device in
terms of both services that are running in that moment and GUI objects displayed

12



CHAPTER 3. STATE OF THE ART OF ANDROID TESTING

on the screen.
Another tool is Stoat [14] which uses an evolutionary form of the model-based ex-
ploration strategy. This tool divides the exploration work in two phases. In the
first one, it receives the apk file of the app in input and it constructs a probabilistic
GUI model dynamically. During this first phase, Stoat [14] helps itself perform-
ing a static analysis to discover events that are not directly deducible from the
dynamic one, looking for event listeners among the source files. The nodes of the
GUI model are abstract states of the app, which represent the GUI hierarchy of
an activity in that time instant, while the edges are labelled with a couple (event,
probability), which represents the probability of the input event to be triggered in
that specific abstract state. In the second phase, the model is iteratively mutated,
perturbing the probabilities of the stochastic GUI model, in order to optimize its
objective function that considers both the code coverage and the model coverage,
as well as the diversity among test cases. Once the stochastic GUI model is mu-
tated, the tool compares it with the previous model and decides whether to accept
it based on its fitness score. If it is rejected, the previous model will be chosen for
the next iteration. As soon as the tool reaches the provided number of iterations,
the exploration ends.
A3E Depth-first [15] is another model-based tool. Unlike the others, it uses a
more abstract GUI model because the states are represented by activities. This
technique mimics user actions to explore the app also considering the activity cov-
erage, which is not taken in consideration by the previous tools. This tool creates
a dynamic activity transition graph and it applies a depth-first search algorithm to
thoroughly explore the behaviors of the app. All the generated events are recorded
so that they are repeatable at the end of the exploration, allowing to reproduce
application crashes encountered during the analysis.

3.1.3 Systematic exploration strategy
The systematic exploration strategy generates specific inputs in order to lead the
exploration towards unexplored code. The tools based on this strategy can use
static analysis to be aware about the structure of the application before the dy-
namic exploration. In this way, these tools can generate specific events to reach
uncovered code, using advanced techniques like symbolic execution or evolutionary
algorithms, and this should considerably increase the code coverage.
A3E Targeted [15] is a systematic testing tool able to perform a fast exploration
of the application activities. First, it analyzes the application’s bytecode creat-
ing a static activity transition graph (SATG). Then, it uses this graph to guide
the dynamic exploration towards a fast activity coverage. In fact, since there are
activities that cannot be directly invoked using user events, because they are not
designed to interact with the users, the approach exploits the SATG for starting
and visiting these activities.
Sapienz [16] uses a genetic algorithm to optimize its fitness function, searching
for the shortest input sequences able to maximize both the code coverage and the
failure revelation. The population consists of test suites, which are composed by
a set of test cases, which in turn are composed by test events. The evolutionary

13



CHAPTER 3. STATE OF THE ART OF ANDROID TESTING

algorithm first performs a selection operation, selecting the test suites with the
best fitness score. Then, the test cases inside the test suites are shuffled and a
single point crossover operation swaps the test cases between the test suites with
a certain probability. After that, a mutation operation shuffles the order of the
events inside the involved test cases with a certain probability. Unfortunately, this
tool is no longer supported by its founders.

3.2 Data Loss problem detection nowadays
In the past years, different studies have been conduced to analyze and classify
Android application failures manifested in correspondence of stop-start events.
Android developers are used to writing test cases that subject their apps to ex-
pected sequences of events, which hardly occur in real situations. To address this
problem, Adamsen et al. [6] developed Thor [6], a tool able to inject “neutral
event sequences” into existing Robotium [9] or Espresso [10] test cases, whose goal
is to expose the app under test to adverse conditions. These event sequences try
to simulate real use cases in which, for example, the targeted application may be
subjected to many stop-start events. The experimental evaluation of their tool
on four real world Android apps shows how effective this approach is in reveal-
ing problems that are not directly highlighted by the original test cases. In fact,
whereas these test cases initially had a positive outcome, the same ones modified
by Thor [6] failed.
Amalfitano et al. [5] studied how double orientation changes, called DOC by them,
may mess up the GUI of Android applications, classifying both the manifestations
and the fault occurrences of these problems. In particular, they manually created
the test suites, injected DOC events inside them and verified the presence of GUI
failures comparing the GUI states before and after such stop-start events. Once
observed the GUI failures, they investigated on the faults that caused them and
classified both the detected behaviours and the class of widgets involved. Their
investigation concerned open-source and industrial Android apps, showing that
most of them were not able to correctly handle DOC events. In conclusion, they
affirmed that Dialogs, ListViews and ScrollViews are the most common GUI ob-
jects involved in these types of failures, since they often disappear, change their
properties or appear in wrong positions.
The tools described in the section 3.1 are designed to perform functional testing
while generating test sequences to maximize code coverage and, as underlined by
Zaeem et al. [17], they do not directly address the problem of oracles. Despite their
ability to reveal unique crashes and obtain high code coverage in a short time, the
absence of oracles does not allow them to be used for detecting failures that do
not lead to application crashes.
Although Thor [6] is able to test Android apps in adverse conditions, it does not
work without providing it test cases already implemented and, hence, its effective-
ness depends on the quality of such test cases.
To address Data Loss problems that affect Android applications, Riganelli et al.
[4] developed DataLossHealer [4], a tool capable of detecting and healing such

14



CHAPTER 3. STATE OF THE ART OF ANDROID TESTING

problems while the app is running. This tool detects changes between activity
states before and after stop-start events and thus intervenes on the variables that
lost their values, restoring them correctly. Since DataLossHealer [4] simply heals
specific occurrences of Data Loss problems in a transparent manner to the final
users, these have the feeling that the applications they are using are bug free.
However, the limitation of this tool is that it does not act at fault level and, as a
consequence, it does not directly fix these problems, leaving the affected applica-
tions buggy.
In conclusion, nowadays there are no tools able to detect Data Loss problems while
exploring automatically the app behaviours, as well as able to help developers to
localize and to fix such problems. For these reasons, the need of such tool arises.

15





CHAPTER 4

Development

The automatic test case generation technique described in this thesis work aims
to detect Data Loss failures while dynamically exploring the Android application
under test. Since the proposed technique needs to interact with the Android frame-
work to inject both user and system events into the device, it has been integrated
in DroidBot [13], a state-of-the-art test input generation tool for Android testing,
which already implements these features.
This chapter shows the steps followed for the decision of DroidBot [13] as the tool
to be extended among all the available tools. In addition, it explains the approach
used both for the exploration of the app and for the Data Loss failure detection,
presenting its implementation details at a high level.

4.1 The decision of the tool
The decision of the tool to extend with the technique described in section 4.2 has
been taken after a high level analysis based on the study conducted by Wang et al.
[18], who compared the main state-of-the-art test case generation tools available
described in chapter 3.
The goal of this high level analysis was to find the most extensible tool and, to
achieve this, each of them has been studied considering the following aspects:

• availability of the documentation;

• programming languages used for the implementation;

• code quality;

• exploration strategy;

• ease of use.

17



CHAPTER 4. DEVELOPMENT

More in detail, such analysis consisted of two selection phases:

1. Analysis of both the available documentation associated with the tools and
their source code with a high level of detail and execution of each tool to
observe their ease of use and their functioning at runtime;

2. Detailed analysis of the source code in order to find the right place in the
code to insert the extension for the detection of Data Loss problems.

If a tool did not pass the first phase, then it would not have been considered for
the second one. The results of this high-level analysis are shown in Table 4.1.
Initially, each tool was downloaded from its respective GitHub page and the first
one to be analyzed was Monkey [12]. It is completely written in Java and, at

Name Monkey [12] Sapienz [16] Stoat [14] DroidBot [13] A3E [15]
Documentation 7 3 3 3 3

Programming
language Java Python Python, Java Python Ruby, Java

Code quality

Well
commented, well
organized, code
understandable

Few comments,
well organized

and code
understandable

No comments,
bad organized,
code hard to
understand

No comments,
well organized,

code
understandable

No comments,
well organized,
code hard to
understand

Exploration
strategy Pseudo-random Evolutionary Model-based

evolutionary Model-based Systematic

Ease of use Easy, well
explained

Very easy, well
explained

Note:
The Programming languages are ordered according with the GitHub code percentages;
The Code quality is based only on subjective opinions, considering the code readability, the names used for
variables, methods and classes and the project organization into files and packages;
The Ease of use is also based on subjective opinions, considering the quality of the User Manual and the time
spent to set up the tool.

Table 4.1: High-level analysis of the main state-of-the-art test input generation
tools

first sight, its code seems of good quality. In fact, it is well organized and easy to
understand, thanks to both the presence of many comments and the explanatory
names assigned to variables, methods and classes. In addition, as underlined by
Wang et al. [18], Monkey [12] is the best tool in terms of activity coverage. In
contrast to the others, it was not developed in academic contexts and, for this
reason, no documentation describing how it was designed and implemented was
found.
Sapienz [16] is written in Python and, even though it is not well commented, its
source code is understandable and well organized. Moreover, it reaches a high
activity coverage, slightly less than Monkey [12].
Stoat [14] is written both in Python and in Java. Although its technique is well
described in its documentation, its implementation is not very easy to understand,
because its code is bad organized and it does not include any comments.
DroidBot [13], like Sapienz [16], is written in Python. The readability of its source
code is the highest among all and the project structure is well organized.
A3E [15] is mainly written in Ruby. Its source code is well organized, but, nev-
ertheless, very hard to read due to the absence of comments and the presence of

18



CHAPTER 4. DEVELOPMENT

variable and method names not very significant.
Then, each tool was evaluated in their ease of use and their functioning at run-
time. Unfortunately, during their executions, Sapienz [16], Stoat [14] and A3E [15]
showed different problems that could not be easily solved even with the help of
their founders. For this reason, such tools did not pass this first selection phase
and the only ones left for the second one were Monkey [12] and DroidBot [13].
Monkey [12] is integrated in the Android SDK and it is very easy to use. How-
ever, it does not seem extensible because, after spending many hours analyzing
its source code, no extension points could be found. Moreover, it was designed to
stop as soon as the application crashed, but such behaviour is undesirable for the
goals of the developed technique, whose aim is to maximize the number of Data
Loss failure to be detected.
Instead, DroidBot [13] looks like a programmable and highly extensible tool, as
also mentioned by its creators. In fact, the whole exploration strategy can be
changed just by implementing a new version of the method that generates the
events. It is very easy to use, as its functioning is well described on its GitHub
page. Besides, the oracles for the Data Loss failure detection can be easily intro-
duced in the exploration process.
Since only DroidBot [13] passed all the selection phases, the proposed technique
has been integrated in it.

4.2 Approach overview
The developed technique has the purpose of maximizing both the activity cover-
age and the number of Data Loss failure revelations. The reason why the activity
coverage is preferred to the other metrics (e.g., code coverage or method coverage)
is because it is important to test how activities handle their destruction and recre-
ation in correspondence of stop-start events.
To achieve these goals, the technique explores the apps using a model-based ex-
ploration strategy (see subsection 3.1.2), leveraging on a GUI model created at
runtime, and it heuristically generates both special event sequences and stop-start
events.
The GUI model is a non-deterministic finite automaton (NFA), which is formally
defined as a tuple (Q, Σ, q0, δ, F ). Q is the finite set of abstract states, which
are abstractions of activity GUI states. Σ is the finite set of events e that can be
triggered from such abstract states, such as clicks on buttons, swipes or stop-start
events. q0 ∈ Q is the first abstract state encountered as soon as the exploration
begins. δ : Q× Σ→ 2Q is the transition function, which, given q ∈ Q and e ∈ Σ,
returns the set of abstract states reachable from q triggering e. F = Q is the
set of final abstract states. Since all abstract states are accepting states, no event
sequences are rejected.
The GUI model is defined as a NFA because an event e ∈ Σ triggered from an
abstract state q ∈ Q does not always lead to the same abstract state. For instance,
this might happen if the tested application is non-deterministic.

19



CHAPTER 4. DEVELOPMENT

Mainstart

Login

Settings

Menu

Menu

e1, e2

e3

e1

e4

e2

e3

e1

e2

e3

e2
e5

Figure 4.1: Example of the GUI model

Definition 4.2.1. An abstract state q ∈ Q is a pair (a,E), where a is an activity
name and E ⊆ Σ is an ordered set of events that can be triggered from q.

Definition 4.2.2. Let q = (a,E) and q′ = (a′, E ′) be two abstract states, where
E = (e1, e2, ..., en) and E ′ = (e′

1, e
′
2, ..., e

′
n), then:

q ≡ q′ ⇔ a = a′ ∧ ei = e′
i ∀i ∈ {1, ..., n}

Property 4.2.1. Given the GUI model (Q, Σ, q0, δ, F ) then @ (q, q′) ∈ Q2 such
that q ≡ q′.

Figure 4.1 shows an example of GUI model, where Q = {(Main, (e1, e2, e3)),
(Login, (e1, e4)), (Settings, (e2, e3)), (Menu, (e2, e5)), (Menu, (e1, e2, e3))} and Σ
= {e1, e2, e3, e4, e5}.
This GUI model is dynamically generated at runtime: initially, it is composed
just by an abstract state, which corresponds to the first abstract state encountered
as soon as the exploration begins. Then, if a triggered event leads to a new ab-
stract state, the latter is added to the GUI model. When a new abstract state is
discovered, a special event sequence, containing a stop-start event, is injected to
maximize the Data Loss failure revelation in the current activity. More specifi-
cally, a special event sequence alters the properties of GUI objects, such as the
contents inside EditTexts, and then injects a stop-start event, which is necessary
to reveal Data Loss problems. In fact, after every stop-start event, regardless of
whether it is triggered from a special event sequence or not, an oracle verifies that
the properties of the GUI objects remained the same.
Generally, given an abstract state, it is preferable to generate different events every
time in order to discover new abstract states, thus favoring the exploration of the
app. However, there are cases in which this behaviour is undesired because a spe-
cific event might be a key element to discover new activities. For instance, when
a press on a button opens a NavigationDrawer and a new abstract state is found,
the stop-start event injected within the special event sequence might close the just

20



CHAPTER 4. DEVELOPMENT

opened NavigationDrawer, which could be the only way to access those activities
not yet explored, leading to the previous abstract state. In this situation, it would
be desirable to press that button another time without waiting for all the other
events to be generated.
For this reason, every event e ∈ Σ has a probability Prob(e) to be triggered from a
certain abstract state. An event already injected has less likelihood to be generated
than another one not yet triggered and this probability can be adjusted with the
parameter ε ∈ [0, 1].

Definition 4.2.3. Let:

• q = (a,E) ∈ Q be an abstract state;

• e ∈ E ⊆ Σ be an event that can be triggered from q;

• N ⊆ E be the set of events not yet triggered from q;

• ε ∈ [0, 1] be a parameter.

Then, Prob(e) is the probability of e to be triggered from q and it is defined as
follows:

Prob(e) =

ε ∗
1

|E| if e /∈ N
ε ∗ 1

|E| + (1− ε) ∗ 1
|N | if e ∈ N

The exploration stops when the fixed number of transitions, which is defined a
priori by the user, is reached.

4.3 Implementation
After choosing to extend DroidBot [13], its source code was analyzed more ac-
curately to better understand the functionalities needed to develop the proposed
technique. In particular, besides the entire exploration strategy, oracles and other
types of events have been implemented.

4.3.1 Events
By default, DroidBot [13] already provides a set of events to interact with the
device. Such events are abstracted using Python classes, each of which implements
a different version of the send() method to correctly trigger a specific type of event
on the device, using different Android Debug Bridge (ADB) [19] commands.
Among all these events, the only ones used for the developed exploration strategy
are the following:

• TouchEvent, used to simulate a tap;

• LongTouchEvent, used to simulate a longer tap;

• SetTextEvent, used to write text inside an editable view;

21



CHAPTER 4. DEVELOPMENT

• ScrollEvent, used to simulate a swipe;

• KeyEvent, used to simulate a press on a navigation button (e.g. “Back” or
“Home”).

Since the default version of DroidBot [13] does not provide the possibility to gener-
ate stop-start events, which are essential to reveal Data Loss problems, the screen
rotation event has been implemented. Although a single orientation change of the
device screen is sufficient to generate a stop-start event, the latter does not allow
to have comparable activity GUI states. In fact, the GUI objects in “portrait”
mode are different from the same ones in “landscape” mode, making it impossible
to determine whether a Data Loss failure has occurred. For this reason, it has been
necessary to generate two orientation changes with the aim of both generating a
stop-start event and allowing the comparison of the activity GUI states.
The double orientation change of the device screen has been abstracted with the
DoubleRotationEvent class, which allows to atomically execute two consecutive
screen rotation events. Like in all the other events, the send() method uses ADB
commands to trigger these configuration changes. These commands are executed
in the following order:

1. adb shell settings put system user_rotation 1

2. adb shell settings put system user_rotation 0

The first command sets the device orientation screen mode to “landscape”, while
the second one sets it back to “portrait”.
The key element to maximize the Data Loss failure revelation is the FillAllEvent
class. Given the set of views that compose the activity GUI state at a certain
moment, a FillAllEvent first filters the views, selecting only the ones that are
editable and clickable, such as EditTexts or ToggleButtons, and then triggers the
corresponding events on them, as shown in Figure 4.2. For instance, a TouchEvent
is generated on a RadioButton or a TouchEvent followed by a SetTextEvent is sent
to an EditText. In the latter case, the SetTextEvent writes “test123” inside an
EditText in order to cover the cases in which it is allowed to write only numeric
values or only not numeric ones. Its send() method implementation is shown in
Algorithm 1.
The FillAllEvent should be “safe” because it is not supposed to change the current
abstract state. Therefore, views belonging to the Button class are not considered
as clickable, because they may change the current abstract state with high proba-
bility.
Since the default implementation of the ScrollEvent class allowed only to specify
the starting coordinates of a swipe event, this event has been extended with the
possibility to specify also its ending coordinates. Thanks to this extension, a swipe
can be performed starting from one side of the screen to the opposite one, allowing
to improve even more both the Data Loss failure revelation and the exploration
strategy. For example, a swipe from the bottom to the top of the device screen
can be useful for those activities whose GUI objects are not all visible at the same
time (see Figure 4.3), or a swipe from the leftmost side to the rightmost side of the

22



CHAPTER 4. DEVELOPMENT

Algorithm 1 Algorithm to generate and send the events used by a FillAllEvent
events← ∅
views← getViewsFromDevice()
for all view ∈ views do
if view ∈ EditableClasses then
events← events ∪ SetTextEvent(“test123”, view)

else if view ∈ ClickableClasses then
events← events ∪ TouchEvent(view)

end if
end for
for all event ∈ events do
event.send()

end for

screen, or vice versa, can reveal a NavigationDrawer, which may not be otherwise
accessible (see Figure 4.4), increasing the activity coverage.
In conclusion, all the events have been provided with a createUniqueCode() method,
which internally uses the hash function MD5 to generate an alphanumeric sequence
that uniquely identifies them. This method has been implemented in two versions:
the first one generates the code based on the properties of the target view, while
the second one bases itself only on the properties of the event class, as there are
event classes without any view attached (e.g., the DoubleRotationEvent class).

(a) Before a FillAllEvent (b) After a FillAllEvent

Figure 4.2: A FillAllEvent writes inside every EditText and presses every Toggle-
Button and RadioButton in OpenVPN for Android v0.7.5

23



CHAPTER 4. DEVELOPMENT

(a) Before a ScrollEvent (b) After a ScrollEvent

Figure 4.3: A ScrollEvent from the bottom to the top in Calendar Notifications
v3.14.159 shows the views that first were hidden

(a) Before a ScrollEvent (b) After a ScrollEvent

Figure 4.4: A ScrollEvent from the leftmost side to the rightmost side opens a
NavigationDrawer in Equate v1.6

24



CHAPTER 4. DEVELOPMENT

[
...,
{

’content_description ’: None,
’resource_id ’: None,
’text ’: ’Editing " test123 "’,
’visible ’: True,
’checkable ’: False ,
’children ’: [],
’size ’: ’720*81 ’,
’checked ’: False ,
’temp_id ’: 4,
’selected ’: False ,
’child_count ’: 0,
’content_free_signature ’: ’[ class ] android . widget . TextView [ resource_id ]None ’,
’is_password ’: False ,
’parent ’: 3,
’focusable ’: False ,
’editable ’: False ,
’focused ’: False ,
’clickable ’: False ,
’class ’: ’android . widget .TextView ’,
’scrollable ’: False ,
’package ’: ’de. blinkt .openvpn ’,
’long_clickable ’: False ,
’view_str ’: ’a209096d5371003c3865b683290f620f ’,
’enabled ’: True,
’bounds ’: [[48, 115], [768, 196]],
’signature ’: ’[ class ] android . widget . TextView [ resource_id ]None[text] Editing " test123 "[ enabled ,,]’

},
...

]

Figure 4.5: The list of Python dictionaries describing the GUI state of the activity
shown in Figure 4.2a.

4.3.2 Oracles
Data Loss failures can cause application crashes and changes in the GUI state of
an activity, as described in section 2.3.
Whereas the detection of app crashes can be performed analyzing the outputs of
Logcat [20], whose purpose is to dump system messages, changes in the GUI state
of an activity after a stop-start event can not be detected with the same mecha-
nisms, but require specific oracles.
Since changes in the view properties that compose an activity may manifest them-
selves either with GUI failures or not, two types of oracles have been implemented,
each of which takes and uses two different snapshots of an activity GUI state to
determine whether a Data Loss failure has occurred.
The property-based oracle covers the cases in which changes in the view properties
do not reflect themselves in graphical changes directly visible to the users. The
snapshot of this oracle is a list of Python dictionaries, which provides a description
of both the view hierarchy and the set of view properties, as illustrated in Figure
4.5, where only a view has been reported to avoid overloading the discussion. In
order to detect Data Loss failures, it simply compares the snapshots taken before
and after a DoubleRotationEvent. Figure 4.6 shows a Data Loss failure that can
be detected only by using the property-based oracle. In particular, from how it
can be deduced from the two figures, the Data Loss failure has not manifested
itself graphically: the images are identical. However, what has changed in their
snapshots is the value contained in the property “content_description”.
Instead, the screenshot-based oracle aims to detect those activity GUI state changes
that manifest themselves graphically without directly affecting the view proper-
ties or the view hierarchy. In contrast to the other oracle, this one considers the

25



CHAPTER 4. DEVELOPMENT

(a) Before a DoubleRotationEvent (b) After a DoubleRotationEvent

[
...,
{

’content_description ’: ’Close navigation drawer ’,
...

},
...,

]

(a) Before a DoubleRotationEvent

[
...,
{

’content_description ’: ’Open navigation drawer ’,
...

},
...,

]

(b) After a DoubleRotationEvent

Figure 4.6: A Data Loss failure that can be detected only by using the property-
based oracle in MALP 3d31062

screenshot of the device screen as a snapshot and uses Algorithm 2 to detect Data
Loss failures. More specifically, the Screenshot class encapsulates this algorithm,
which takes in input a threshold value and two images representing the screen-
shots before and after a DoubleRotationEvent, which are obtained using the ADB
command “adb shell exec-out screencap -p”. The two images are first converted
in gray scale and then cropped. The first operation speeds up the comparison
procedure while the second one has the purpose of decreasing the number of false
positives generated. In fact, the crop operation shrinks the image size in order to
discard the top and the bottom of the device screen, as they display information

26



CHAPTER 4. DEVELOPMENT

Algorithm 2 Algorithm to compare two images used by the Screenshot class
Input: img1, img2: two image snapshots of an activity GUI state
Input: threshold: threshold value used for the comparison
Output: true if img1 and img2 are equal, false otherwise

Require: img1 and img2 are the same size
Require: 0 ≤ threshold ≤ 1
img1← convertToGrayScale(img1)
img2← convertToGrayScale(img2)
img1← cropImage(img1)
img2← cropImage(img2)
thresholdInP ixels← height(img1) ∗ wight(img1) ∗ threshold
differentP ixels← countDifferentPixels(img1, img2)
if differentP ixels < thresholdInP ixels then
return True

else
return False

end if

that varies over time, such as the battery level or the time. In conclusion, the
images are compared pixel by pixel and they are equal if the number of different
pixels is less or equal than a value that depends on the threshold. Note that the
threshold value is necessary to avoid false positives generated by the blinking of
the cursor, or other similar scenarios, and by default it is set to 0.0002.
Figure 4.7 shows an example of Data Loss failure that can be detected only by using
the screenshot-based oracle. In fact, the lists of Python dictionaries, describing the
activity GUI states, remain unchanged before and after a DoubleRotationEvent,
in contrast to the screenshots, which show a loss in the zoom position.
As already mentioned, these oracles can detect different types of Data Loss failure
and, hence, it is necessary to simultaneously use them in correspondence of each
stop-start event. In particular, a Data Loss failure is detected if one of them fails.

27



CHAPTER 4. DEVELOPMENT

(a) Before a DoubleRotationEvent (b) After a DoubleRotationEvent

Figure 4.7: A Data Loss failure that can be detected only by using the screenshot-
based oracle in Vespucci Osm Editor v10.2

4.3.3 Exploration strategy
The exploration strategy tries to maximize both the activity coverage and the num-
ber of Data Loss failure revelations. As described in section 4.2, the GUI model
abstracts the concept of activity GUI state using abstract states, which have been
implemented with the AbstractState class.
An AbstractState represents a specific GUI state of an activity and it is identified
by the activity name as well as by the ordered set of events that can be triggered
from the abstracted activity GUI state. The set of events is obtained by parsing

[
...,
{

’unique_code ’: ’e9694813e8c57b3aa33621e4e5cc3c9e ’,
’triggered ’: False

},
{

’unique_code ’: ’920 d005452363205c8a13700f2aa9f9d ’,
’triggered ’: True

},
...

]

Figure 4.8: Example of how events are stored inside an AbstractState

the same list of Python dictionaries used by the property-based oracle (see Figure
4.5). More precisely, it is passed in input to Algorithm 3, which analyzes it and
generates the ordered set of events in output. As shown in Figure 4.8, an Abstract-
State keeps track of which events have already been generated, by marking them

28



CHAPTER 4. DEVELOPMENT

Algorithm 3 Algorithm to create the events from an activity GUI state
Input: views: a Python dictionary describing an activity GUI state
Output: events: an ordered set of events

for all view ∈ views do
if view is not visible ∨ view is not enabled then
views← views− view

end if
end for
events← ∅
for all view ∈ views do
if view is clickable then
events← events ∪ TouchEvent(view)

end if
if view is scrollable then
events← events ∪ ScrollEvent(view, UP)
events← events ∪ ScrollEvent(view, DOWN)
events← events ∪ ScrollEvent(view, LEFT)
events← events ∪ ScrollEvent(view, RIGHT)

end if
if view is checkable then
events← events ∪ TouchEvent(view)

end if
if view is longclickable then
events← events ∪ LongTouchEvent(view)

end if
if view is editable then
events← events ∪ SetTextEvent(view)

end if
end for
events← events ∪ ScrollEvent(view, FULLLEFT)
events← events ∪ ScrollEvent(view, FULLRIGHT)
events← events ∪ KeyEvent(BACK)
events← events ∪ DoubleRotationEvent()
return events

as either triggered or not triggered. For reasons of efficiency, such events are stored
with their corresponding unique codes obtained using their createUniqueCode()
method. In addition, the AbstractState class also provides two methods: the first
one returns the entire set of event codes, while the second one is used to get just
the codes of the events not yet triggered. As soon as all the events in an Abstract-
State are marked as triggered, all of them are newly labelled as not triggered.
The entire exploration strategy is represented by the DataLossPolicy class, which
generates events used both to explore the application under test and to reveal Data
Loss problems detected using the oracles described in subsection 4.3.2. Figure 4.9
shows the work flow of the developed policy. Moreover, Algorithm 4 shows how the

29



CHAPTER 4. DEVELOPMENT

Figure 4.9: DataLossPolicy diagram

event sequences are generated and how the oracles are used to detect Data Loss
failures after each DoubleRotatoinEvent. The specialEvents variable is used to
correctly handle the special event sequence generation. Moreover, the exploration
ends when the fixed number of events to inject is reached. Instead, Algorithm 5
shows how the event to be triggered is chosen. First, it checks whether the appli-
cation is in the foreground and eventually generates specific events to push it on
top of the activity stack. It also creates the AbstractStates used for the event gen-
eration and stores them. If such AbstractState has never been encountered during
the exploration, the policy starts to inject a special event sequence, otherwise its
equivalent one is fetched from the AbstractStates stored in order to use the infor-
mation about the events already triggered from it, thus generating a new event.

30



CHAPTER 4. DEVELOPMENT

Algorithm 4 DataLossPolicy algorithm
Input: maxNumOfEvents: the fixed number of events to be triggered

count← 0
while count < maxNumOfEvents do
if count == 0 then
event← KeyEvent(HOME)

else if count == 1 then
event← Intent(“start initial activity”)

else
event← nextEvent()

end if
if event == DoubleRotationEvent then
screenBefore← takeScreenshotFromDevice()
viewsBefore← getViewsFromDevice()

end if
execute(event)
if event == DoubleRotationEvent then
screenAfter ← takeScreenshotFromDevice()
viewsAfter ← getViewsFromDevice()
if screenBefore 6= screenAfter ∨ viewsBefore 6= viewsAfter then
print Data Loss found!
specialEvents← false
saveAsImg(screenBefore, screenAfter)
saveAsTxt(viewsBefore, viewsAfter)

end if
end if
count← count+ 1

end while

31



CHAPTER 4. DEVELOPMENT

Algorithm 5 Algorithm to choose the next event to be triggered
if app /∈ activityStack then
return Intent(“start initial activity”)

else if app 6= foregroundApp then
return KeyEvent(BACK)

end if
currentActivity ← getCurrentActivity()
possibleEvents← getPossibleEvents()
abstractState← AbstractState(currentActivity, possibleEvents)
if abstractState /∈ abstractStatesFound then
abstractStatesFound← abstractStatesFound ∪ abstractState
specialEvents← true
return FillAllEvent

else
abstractState← extract(abstractState, abstractStatesFound)

end if
if lastEvent == FillAllEvent then
return DoubleRotationEvent

else if lastEvent == DoubleRotationEvent ∧ specialEvents == true then
specialEvents← false
return ScrollEvent(FULL_DOWN)

end if
num← Uniform(0, 1)
if 0 ≤ num ≤ ε then
events← getAllEvents(abstractState)

else
events← getEventsNotYetTriggered(abstractState)

end if
event← extractRandomEvent(events)
return event

4.3.4 Report generation
At the end of the execution, a folder containing useful information about the per-
formed analysis is generated. The structure of the output directory is illustrated in
Figure 4.10. The “dataloss” folder contains a set of images and text files, which are
created whenever one of the two oracles fails. The images correspond to the snap-
shots of the screenshot-based oracle and they are named “year_month_day_hour
_minute_second_moment.png”, where “moment” can be either “before” or “af-
ter”, depending on whether the screenshot was taken before or after a stop-start
event. Instead, the text files contain the snapshots used by the property-based or-
acle and they are named “year_month_day_hour_minute _second_views.txt”.
This information is useful to analyze the results of the execution. In fact, they can
be used to understand why a Data Loss failure was detected at a certain time.
The events folder contains JSON files, each of which represents an abstraction of

32



CHAPTER 4. DEVELOPMENT

output_dir

dataloss

2019_06_04_15_13_12_before.png

2019_06_04_15_13_12_after.png

2019_06_04_15_13_12.txt

...

events

event_2019-06-04_151312.json

...

logcat.txt

report.html

Figure 4.10: Output directory

a specific event generated during the exploration. If the user selects the replay
exploration policy, which is included in the default version of DroidBot [13], these
files will be used to generate the same exact event sequence of a previous execu-
tion.
The logcat.txt file contains all the system messages provided by Logcat [20], includ-
ing the stack traces of the fatal exceptions thrown. It can be useful to understand
the nature of the crashes observed and to analyze whether they were caused by
Data Loss faults.
Finally, the report.html file contains the list of all the events generated during the
execution and, for all of them, useful information is reported, as shown in Figure
4.11.

Figure 4.11: Example of report.html of Book Catalogue v5.2.0-RC3a

33





CHAPTER 5

Experimental evaluation

Once the implementation phase was completed, in order to evaluate its effective-
ness in detecting Data Loss failures in Android applications, the technique de-
scribed in this thesis work has been tested with the apps contained in the bench-
mark provided by Riganelli et al. [1]. The benchmark includes 110 known Data
Loss problems affecting 48 buggy Android apps (56 considering all their versions)
and Appium [8] test cases useful for replaying and understanding such problems,
where 98 of them also implement JUnit [7] oracles to automatically detect the
corresponding failures. In addition, it contains further 58 Data Loss problems al-
ready reported to the developers, but not provided with the test cases necessary
for their replication.
This chapter justifies the choices made to initialize the evaluative experiments,
summarizes the data obtained from such experiments and highlights the emerged
strengths and weaknesses of the proposed technique.

5.1 Study setup
All the experiments have been conduced on a Genymotion v3.0.2 Android emulator
executed on a Linux machine. More precisely, the emulator was a Google Nexus 5
running Android 6.0 API 23 with 4 processors and 2 GB of RAM, while the Linux
machine had an Intel Core I5-560M processor, 8 GB of RAM and ran Ubuntu
18.04.
The experimentation work on the apps of the benchmark required the setting of
three parameters:

1. The number of runs for every app;

2. The amount of time to be allocated for each run;

3. The value of the ε parameter.

35



CHAPTER 5. EXPERIMENTAL EVALUATION

The choice for the number of runs and for the amount of time to be allocated for
each run has been made relying on the study conduced by Wang et al. [18], who
performed an experimentation work to evaluate the main state-of-the-art test case
generation tools on industrial Android apps. In their study, they carried out their
experiments allocating 3 runs of 3 hours for each application in order to “compen-
sate potential influence brought by randomness during testing”.
Conforming to their decisions, since the stopping criteria for the exploration strat-
egy can only be specified in terms of number of events to be triggered and since
the emulator took about 4.8 seconds to complete the generation of a single event,
every application of the benchmark has been tested with 3 runs of 2250 events.

0 250 500 750 1,000 1,250 1,500 1,750 2,000 2,250

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Number of generated events

A
ct
iv
ity

co
ve
ra
ge

(%
)

ε = 0.0
ε = 0.1
ε = 0.2

Figure 5.1: Trend of average activity coverage (in %) to varying of the ε parameter
on Equate v1.6, Calendar Notifications v3.14.159 and Twidere v3.7.3

To decide the value of the ε parameter, three apps, able to represent all the appli-
cations of the benchmark in terms of number of activities, have been first selected
and then tested. First of all, all the apps have been grouped based on their num-
ber of activities and just the ones of smallest, medium and biggest size have been

36



CHAPTER 5. EXPERIMENTAL EVALUATION

considered. Later, a random app has been extracted from each class, obtaining
the following sample:

• Equate v1.6 with 2 activities;

• Calendar Notifications v3.14.159 with 13 activities;

• Twidere v3.7.3 with 52 activities.

Afterwards, different experiments have been performed on the aforementioned ap-
plications with the purpose of choosing the best value of the ε parameter, which
would have led to the highest activity coverage, where an experiment was com-
posed by a total of 9 runs: 3 runs of 2250 events for each application with a fixed
value of the ε parameter.
At the end of each experiment, the average activity coverage has been computed
considering the results of all the 9 runs composing it. If the average value of the
activity coverage of a specific experiment was less than the value obtained from
the previous one, then the value of the corresponding ε would have been rejected
and the one of the previous experiment accepted.
As shown in Figure 5.1, the first experiment set ε = 0.0 and the average activity
coverage achieved was 52%, the second one set ε = 0.1 and it achieved 60% of
average activity coverage, while the last one set ε = 0.2, achieving 44% of average
activity coverage. Since the last experiment had led to a worse average value of
activity coverage than the previous one, the evaluation of the technique was car-
ried out with ε = 0.1.
In conclusion, the three parameters required to start the experimentation work on
the 48 Android apps of the benchmark were the following:

1. The number of runs for every app: 3;

2. The amount of time to be allocated for each run: 3 hours (2250 events);

3. The value of the ε parameter: 0.1.

5.2 Experimentation work
In order to measure the effectiveness of the developed technique in terms of ability
to detect the Data Loss problems reported in the benchmark as well as new ones,
all the applications have been tested using the parameters described in section 5.1.
Before launching their executions, the apps have been granted with the permis-
sions for accessing to the protected resources of the device (e.g., contacts, files or
camera) needed for their correct functioning.
The default version of DroidBot [13] already provided a mechanism for translating
JSON files, which must be written following specific structures, to ordered event
sequences. Thanks to this functionality, since many apps required to login, differ-
ent JSON files containing information about usernames and passwords have been
written to inject the specific event sequences in order to complete the authenti-
cation. An example of a JSON file is shown in Figure 5.2. The applications that
required JSON files are the following:

37



CHAPTER 5. EXPERIMENTAL EVALUATION

• Conversations v1.14.0 and v1.23.8

• K-9 Mail v5.010, v5.207 and v5.401

• Octodroid v4.0.3 and v4.2.0

• QuasselDroid v0.11.5

• Tusky for Mastodon v1.0.3

• Twidere v3.7.3

To launch the experiments on the selected apps, DroidBot [13] was executed with
the command reported in Figure 5.3.

{
" views ": {

" login_username ": {
" resource_id ": ".* et_username_main ",
" class ": ".* EditText "

},
" login_password ": {

" resource_id ": ".* et_password_main ",
" class ": ".* EditText "

},
" login_button ": {

"text": " Login ",
" class ": ".* TextView "

}
},
" states ": {

" login_state ": {
" views ": [" login_username ", " login_password ", " login_button "]

}
},
" operations ": {

" login_operation ": [
{

" event_type ": " set_text ",
" target_view ": " login_username ",
"text": " unimibtest "

},
{

" event_type ": " set_text ",
" target_view ": " login_password ",
"text": " unimib123456 "

},
{

" event_type ": " touch ",
" target_view ": " login_button "

}
]

},
"main": {

" login_state ": [" login_operation "]
}

}

Figure 5.2: The JSON file used to test OctoDroid v4.0.3

droidbot -a appname .apk -o outdir -policy data_loss -epsilon 0.1 -count 2250 -grant_perm [- script file.json]

Figure 5.3: The shell command used to start the execution of DroidBot [13] on
the appname.apk app

Definition 5.2.1. A false positive occurs in one of the following situations:

38



CHAPTER 5. EXPERIMENTAL EVALUATION

• The screenshot obtained after the DoubleRotationEvent is black, which in-
dicates that the emulator was not responding;

• The screenshot after the DoubleRotationEvent was taken while the device
screen was still rotating, which indicates that the emulator had not finished
to process the adb command yet;

• Either the screenshots or the views before and after the DoubleRotation-
Event are different, but such differences could not be considered as Data
Loss failures. Figure 5.4 shows an explanatory example of such cases.

(a) Before a DoubleRotationEvent (b) After a DoubleRotationEvent

Figure 5.4: A false positive detected in World Clock & Weather v1.8.6

Definition 5.2.2. A true positive is a Data Loss failure detected by the technique
that is a real manifestation of a Data Loss problem.

Once the execution phase was completed, that is, all the apps were successfully
tested, the obtained raw data have been processed and classified with the following
criteria:

1. Every Data Loss failure detected by the technique was labelled as true posi-
tive or as false positive;

2. Every Data Loss failure labelled as true positive was further labelled as:

• Benchmark if it belonged to the benchmark;

39



CHAPTER 5. EXPERIMENTAL EVALUATION

• Online if it did not belong to the benchmark but it had already been
reported to the developers;
• New otherwise.

3. Every Data Loss failure was grouped into the corresponding activity from
which it was detected, thus avoiding considering the same Data Loss failures
more than once;

4. Every activity was labelled as:

• False positive if all its Data Loss failures had been labelled as false
positives;
• Known if at least one of its Data Loss failures had been labelled as
benchmark or online;
• New otherwise.

In conclusion, the data processed with the aforementioned criteria have been fur-
ther analyzed in order to figure out the strengths and weaknesses of the proposed
technique resulting from the experiments conduced.

5.3 Results
The results of the evaluation study are shown in Table 5.1. Every row represents
the merged results of the 3 runs of an application with its corresponding version.
The columns of the table are organized as follows:

• App name, which reports the app name;

• Release, which reports the version of the app;

• Activities, which reports the total number of app activities;

• Total Buggy Activities, which reports the total number of buggy app activ-
ities combining the activities labelled as known with the ones labelled as
new;

• Activity Coverage Average (Total), which reports both the average activity
coverage and the total activity coverage achieved, where the total activity
coverage is the ratio between the number of activities found in all the runs
and the total number of the app activities;

• Data Loss Benchmark Found Average (Total), which reports both the average
number and the total number of the Data Loss failures labelled as benchmark;

• Data Loss Online Found Average (Total), which reports both the average
number and the total number of the Data Loss failures labelled as online;

40



CHAPTER 5. EXPERIMENTAL EVALUATION

• Activities False Positives Found Average (Total), which reports both the
average number and total number of the activities found and labelled as
false positives;

• New Buggy Activities Found Average (Total), which reports both the average
number and the total number of the activities found and labelled as new;

• Activities Crashed After A Stop-Start Event Average (Total), which reports
both the average number and the total number of activities crashed after a
DoubleRotationEvent.

App name Release Activities
Total
Buggy

Activities

Activity
Coverage
Average
(Total)

Data Loss
Benchmark

Found
Average
(Total)

Data Loss
Online
Found
Average
(Total)

Activities
False

Positives
Found
Average
(Total)

New Buggy
Activities
Found
Average
(Total)

Activities
Crashed After
A Stop-Start
Event Average

(Total)

Amaze File Manager v3.1.0-beta.1 4 4 100% (100%) 3/5 (3/5) 2/2 (2/2) 0 (0) 2 (2) 1 (1)
AntennaPod v1.5.2.0 16 5 33% (44%) 5/7 (5/7) 2/11 (2/11) 1 (1) 3 (3) 0 (0)
BeeCount v2.4.7 8 7 96% (100%) 1/3 (1/3) 1/5 (1/5) 1 (1) 4 (4) 0 (0)

BookCatalogue v5.2.0-RC3a 35 20 66% (71%) 5/7 (6/7) - 0 (0) 11 (14) 1 (1)
Calendar Notification v3.14.159 13 7 67% (69%) 3/3 (3/3) 1/1 (1/1) 0 (0) 4 (4) 1 (1)

Conversations v1.14.0 21 7 41% (57%) 0/1 (0/1) - 0 (0) 4 (6) 1 (1)
Conversations v1.23.8 23 9 40% (57%) 1/1 (1/1) - 0 (0) 6 (8) 0 (0)
CycleStreets v3.5 11 6 55% (55%) 1/1 (1/1) - 0 (0) 5 (5) 0 (0)

Diary v1.26 3 3 100% (100%) 1/2 (2/2) - 0 (0) 2 (2) 0 (0)
DNS66 v0.3.3 5 3 100% (100%) 1/1 (1/1) - 0 (0) 2 (2) 0 (0)

Document Viewer v2.7.9 9 3 48% (56%) 0/1 (0/1) - 1 (1) 2 (2) 0 (0)
Easy xkcd v6.0.4 9 6 74% (78%) 1/1 (1/1) - 0 (0) 5 (5) 2 (2)
Equate v1.6 2 2 100% (100%) 2/2 (2/2) 1/1 (1/1) 0 (0) 1 (1) 1 (1)

Etar Calendar v1.0.10 12 2 42% (42%) 4/5 (4/5) 2/5 (3/5) 0 (0) 0 (0) 0 (0)
Firefox Focus v4.0 6 4 44% (50%) 0/1 (0/1) - 0 (0) 3 (3) 0 (0)

Flym v1.3.4 6 5 83% (83%) 0/1 (0/1) - 0 (0) 4 (4) 0 (0)
Gadgetbridge v0.25.1 20 3 28% (30%) 1/1 (1/1) - 2 (3) 2 (2) 1 (1)
K-9 Mail v5.010 28 10 41% (46%) 0/1 (0/1) - 0 (0) 7 (9) 1 (1)
K-9 Mail v5.207 27 9 51% (63%) 1/1 (1/1) - 0 (0) 7 (8) 1 (1)
K-9 Mail v5.401 29 9 54% (59%) 1/1 (1/1) - 0 (0) 7 (8) 1 (1)

KISS Launcher v2.25.0 2 2 100% (100%) 1/1 (1/1) - 0 (0) 1 (1) 0 (0)
Loop Habit Tracker v1.6.2 7 5 71% (71%) 2/6 (2/6) - 1 (1) 0 (0) 0 (0)

MALP 3d31062 2 1 100% (100%) 1/1 (1/1) - 0 (0) 0 (0) 1 (1)
MALP v1.1.0 4 1 33% (50%) 2/4 (3/4) - 0 (0) 0 (0) 1 (1)
Mgit v1.5.0 10 9 97% (100%) 1/1 (1/1) - 1 (1) 7 (8) 1 (1)

MTG Familiar v3.5.5 2 1 50% (50%) 0/1 (1/1) - 0 (0) 0 (0) 0 (0)
Notepad v2.3 3 2 67% (67%) 1/1 (1/1) - 0 (0) 1 (1) 0 (0)
OctoDroid v4.0.3 44 21 56% (66%) 2/2 (2/2) - 0 (0) 16 (19) 1 (1)
OctoDroid v4.2.0 46 22 44% (57%) 0/1 (1/1) - 1 (2) 17 (21) 0 (0)
Omni Notes v5.4.3 17 4 29% (35%) 0/1 (0/1) - 0 (0) 3 (3) 0 (0)
OpenTasks v1.1.13 9 6 78% (78%) 1/1 (1/1) - 0 (0) 5 (5) 0 (0)

OpenVPN for Android v0.7.5 13 6 46% (46%) 1/1 (1/1) - 0 (0) 5 (5) 1 (1)
PassAndroid v3.3.3 14 3 36% (36%) 2/3 (3/3) 8/8 (8/8) 0 (0) 0 (0) 0 (1)
Periodic Table v1.1.1 3 3 100% (100%) 2/2 (2/2) - 0 (0) 1 (1) 0 (0)
Port Knocker v1.0.8 6 2 50% (50%) 2/3 (2/3) 0/1 (0/1) 0 (0) 0 (0) 0 (0)
Prayer Times v3.6.6 22 9 32% (36%) 3/7 (6/7) 1/2 (1/2) 0 (0) 4 (6) 1 (1)
QuasselDroid v0.11.5 5 3 40% (40%) 1/1 (1/1) - 0 (0) 2 (2) 1 (1)
QuickLyric v2.1 4 3 75% (75%) 1/1 (1/1) - 0 (0) 2 (2) 0 (0)
Simple Draw v3.1.5 7 3 86% (86%) 0/1 (0/1) - 0 (0) 2 (2) 0 (0)

Simple File Manager v2.6.0 8 6 88% (88%) 1/1 (1/1) - 0 (0) 3 (5) 1 (1)
Simple File Manager v3.2.0 8 6 75% (75%) 1/1 (1/1) - 0 (0) 4 (5) 0 (0)

Simple Gallery v1.50 11 5 48% (55%) 1/4 (2/4) 1/7 (1/7) 0 (0) 3 (3) 0 (0)
Simple Solitaire v2.0.1 7 3 93% (100%) 0/1 (1/1) - 0 (0) 1 (2) 1 (1)

Simpletask v10.0.7 11 7 67% (73%) 1/1 (1/1) - 0 (0) 6 (6) 0 (0)
SMS Backup Plus v1.5.11-Beta18 7 2 14% (14%) 1/1 (1/1) - 0 (0) 1 (1) 0 (0)

Syncthing v0.9.5 9 9 93% (100%) 3/5 (4/5) 2/2 (2/2) 1 (1) 5 (6) 1 (1)
Taskbar v3.0.3 21 2 26% (29%) 2/2 (2/2) 12/13 (13/13) 1 (1) 1 (1) 1 (1)

Tasks Astrid To-Do List Clone v6.0.6 45 9 19% (27%) 0/1 (0/1) - 1 (1) 6 (8) 1 (1)
Tusky for Mastodon v1.0.3 12 8 78% (83%) 1/1 (1/1) - 0 (0) 6 (7) 3 (3)

Twidere v3.7.3 52 7 14% (17%) 0/1 (0/1) - 0 (0) 6 (6) 0 (0)
Vespucci Osm Editor v10.2 19 7 42% (47%) 1/1 (1/1) - 1 (1) 5 (6) 0 (0)

Vlille Checker v4.4.0 6 3 67% (67%) 1/1 (1/1) - 0 (0) 2 (2) 0 (0)
WiFiAnalyzer 1.9.2 4 3 75% (75%) 3/3 (3/3) - 0 (0) 1 (1) 0 (0)

World Clock & Weather v1.8.6 4 4 100% (100%) 0/1 (0/1) - 0 (0) 3 (3) 0 (0)
TOTAL - 713 311 62% (66%) - (82/110) - (36/58) 1 (14) 5 (230) 1 (27)

Table 5.1: Results of the experiments

5.3.1 Activity coverage
The results reported in Table 5.1 and in Figure 5.5 show that the developed tech-
nique achieved an average value of 66% for the total activity coverage and 62%

41



CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.5: Activity coverage reached for each app

42



CHAPTER 5. EXPERIMENTAL EVALUATION

for the average activity coverage. Unfortunately, although QuasselDroid v0.11.5
and Conversations v1.14.0 required to login and the corresponding JSON files had
been written, some problems during the authentication phase arose and thus they
were not completely tested, negatively affecting the activity coverage.

5.3.2 Data Loss problems
As shown in Table 5.1, the technique found 82 out of 110 Data Loss problems of the
benchmark and 36 out of 58 Data Loss problems not belonging to the benchmark
but already reported to the developers.
Figure 5.6 shows that all the already known Data Loss problems affecting 32 apps
out of 56 were detected during the experimentation. Instead, for 9 apps out of 56
no Data Loss failures already known were found.
After a detailed analysis of the remaining 50 Data Loss problems to find, the latter
have been divided into 3 classes based on the reasons why these failures had not
been discovered during the exploration of the apps:

• Complex sequence: the Data Loss failure required a specific event sequence
to be found that was not generated, even though the current implementation
of the technique allowed it;

• Preliminary actions required: the Data Loss failure could have been found
with the current implementation of the technique, but preliminary operations
were required;

• Improvements required: the Data Loss failure was not found because the cur-
rent implementation of the technique did not allow to generate the required
event sequence.

Figure 5.7 shows the distribution of the remaining 50 Data Loss failures not found
into the 3 aforementioned classes: 41 of them were not found because they re-
quired complex event sequences, 4 of them required preliminary actions and 5 of
them required improvements in the technique. For example, the Data Loss failure
reported in the issue 439 of the benchmark in OmniNotes v.5.4.3 was classified as
a complex sequence, as it would have been necessary to create a protected note
with a password, unlock it and, then, inject a DoubleRotationEvent. Although this
event sequence could have been generated with the current implementation of the
technique, the probability that this would have happened was very low. The Data
Loss failure reported in the issue 44 of the benchmark in Document Viewer v2.7.9
required to open a book or a document, change to another page and rotate the
device screen, but, since it was necessary to have a book or a document already
downloaded and imported in the app, it was classified as preliminary actions re-
quired. Instead, the Data Loss problem reported in the issue 654 of the benchmark
in Tasks Astrid To-Do List Clone v6.0.6 required to temporarily exit from the app
and take a picture with the device camera. Since the current implementation of
the technique was not supposed to generate events outside the application bound-
aries, it was impossible to detect this failure without improving the exploration

43



CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.6: Percentage of Data Loss failures labelled as benchmark or online de-
tected for each app

44



CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.7: Classification of the undiscovered Data Loss problems labelled as
benchmark or online

strategy, allowing it to take also steps outside the app under test. For this reason,
this Data Loss problem was classified as improvement required.
In addition, the results demonstrate that the developed technique managed to de-
tect many new buggy activities. Initially, as shown in Table 5.1 and in Figure
5.8, the total number of known buggy activities were only 81 out of 713, which
corresponds to 12% of the total number of activities. At the end of the experi-
mentation phase, this number increased up to 230 out of 713, which corresponds
to 47% of the total number of activities. For example, before the experimentation,
in OctoDroid v4.2.0 just 1 activity was known to be buggy while at the end of the
analysis this number increase up to 22 buggy activities.
In conclusion, even though the benchmark does not include any Data Loss failures
leading to application crashes, the technique discovered many of them. In partic-
ular, 23 apps out of 56 registered at least a crash after a DoubleRotationEvent.
For example, in Tusky For Mastodon v1.0.3, 3 activities out of 12 manifested Data
Loss problems causing application crashes.

45



CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.8: Number of buggy activities for each app

46



CHAPTER 5. EXPERIMENTAL EVALUATION

5.3.3 Oracles
Since 118 out of 168 (72 %) Data Loss failures already known were found, this
demonstrates that both the exploration strategy and the oracles had correctly
been implemented.
The implemented oracles are effective in detecting Data Loss failures: 7 out of 12
Data Loss failures of the benchmark, for which it was not possible to implement
JUnit [7] assertions in their associated Appium [8] test case, have been detected.
This indicates that, in these cases, the developed oracles are better than the oracles
created using JUnit [7] in detecting Data Loss problems.
Figure 5.9 shows the total number of Data Loss failures labelled as true positives
detected for each application and divided into the corresponding oracles from which
they were detected. It also confirms that the two types of implemented oracles are
complementary, as previously mentioned in subsection 4.3.2. In fact, as also shown
in Figure 5.10, there are Data Loss failures detected only by the screenshot-based
oracle (1246 out of 13605) and others only by the property-based oracle (2417 out
of 13605).
A similar analysis was also conduced for the Data Loss failures labelled as false
positives and the results are shown in Figure 5.11 and in Figure 5.12. Even in
this case, the majority of the readings shows that the Data Loss failures were
detected by both the two oracles (1180 out of 1645). The remaining 372 and
93 false positives were respectively detected by the screenshot-based oracles and
the property-based oracle. What is emerged from a detailed analysis on the false
positives detected only by the property-based oracle is that also the screenshots
before and after the DoubleRotationEvent were different but were treated as equal
because the threshold value set for the comparison between the two images was
still high, that is, 0.0002. This indicates that if the threshold value was set to
0.0, there would have not been false positives detected only by the property-based
oracle.

47



CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.9: Number of Data Loss failures labelled as true positives detected for
each app

48



CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.10: Percentage of Data Loss failures labelled as true positives detected
by every oracle

Figure 5.11: Percentage of Data Loss failures labelled as false positives detected
by every oracle

49



CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.12: Number of the Data Loss failures labelled as false positives detected
for each app

50



CHAPTER 6

Conclusions

This thesis work has presented the concept of Data Loss problem in Android ap-
plications, describing how they can alter the expected behaviours of the affected
apps and underlining how pervasive they are. Then, after presenting the state of
the art of Android testing, it has highlighted the necessity of a specific tool capable
of automatically detecting these types of problems and, hence, it has introduced a
novel technique able to achieve this goal as well as an evaluation study to measure
its effectiveness.
More specifically, a Data Loss failure occurs when the variables of the application
lose their values after a stop-start event and it can manifest itself both in GUI
failures and in application crashes. These problems can be introduced in an An-
droid app when the developers do not implement properly the logic for saving and
restoring the activity states in correspondence of stop-start events.
Nowadays, although these types of problems affect many Android apps, there are
no tools able to automatically detect them. In fact, the main state-of-the-art test
case generation tools are only able to observe application crashes because they do
not implement specific oracles in order to detect different failures.
To address this problem, this thesis has introduced a novel technique capable of
detecting Data Loss failures while automatically exploring the apps. This tech-
nique has been integrated in DroidBot [13], a state-of-the-art test case generation
tool, and it uses a model-based exploration strategy in order to explore the apps
under test, generating events based on a GUI model constructed at runtime. It
heuristically injects stop-start events and it uses two different oracles to detect
Data Loss problems by comparing the activity GUI states before and after such
events.
The evaluative study presented in this thesis shows the effectiveness of the pro-
posed technique in detecting Data Loss failures. This study involved 48 buggy
Android apps contained in the benchmark provided by Riganelli et al. [1] and the
results demonstrated that the aforementioned technique managed to detect 82 out
of 110 Data Loss problems of the benchmark, 36 out of 58 Data Loss problems

51



CHAPTER 6. CONCLUSIONS

already reported to the developers and many new ones, some of which also caused
application crashes.
The results obtained during the evaluation study confirm the effectiveness of the
implemented oracles in detecting Data Loss failures, but the exploration strategy
still needs different improvements.
In future work, since some Data Loss failures can not be detected with the cur-
rent implementation of the technique, the exploration strategy must be further
improved allowing to detect them.
Finally, thanks to this thesis work, from now on it will be possible to detect Data
Loss failures affecting Android applications using this automatic test case genera-
tion technique.

52



Bibliography

[1] Oliviero Riganelli, Marco Mobilio, Daniela Micucci, and Leonardo Mariani.
“A Benchmark of Data Loss Bugs for Android Apps”. In: Proceedings of the
International Conference on Mining Software Repositories (MSR). 2019.

[2] Statista. Number of available applications in the Google Play Store from De-
cember 2009 to December 2018. 2019. url: https://www.statista.com/
statistics / 266210 / number - of - available - applications - in - the -
google-play-store/.

[3] Android Developers. Bundle. url: https : / / developer . android . com /
reference/android/os/Bundle.html.

[4] Oliviero Riganelli, Daniela Micucci, and Leonardo Mariani. “Healing Data
Loss Problems in Android Apps”. In: Proceedings of the IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW). 2016.

[5] Domenico Amalfitano, Vincenzo Riccio, Ana C. R. Paiva, and Anna Rita
Fasolino. “Why does the orientation change mess up my Android applica-
tion? From GUI failures to code faults”. In: Software Testing, Verification
and Reliability 28.1 (2018), e1654.

[6] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. “System-
atic Execution of Android Test Suites in Adverse Conditions”. In: Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA).
2015.

[7] JUnit. url: https://junit.org/junit5/.
[8] Appium. url: http://appium.io/.
[9] Robotium. url: https://www.robotium.org/.
[10] Espresso. url: https://developer.android.com/training/testing/

espresso.
[11] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. “Auto-

mated Test Input Generation for Android: Are We There Yet? (E)”. In:
Proceedings of the IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). 2015.

53

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://developer.android.com/reference/android/os/Bundle.html
https://developer.android.com/reference/android/os/Bundle.html
https://junit.org/junit5/
http://appium.io/
https://www.robotium.org/
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso


BIBLIOGRAPHY

[12] Android Developers.UI/Application Exerciser Monkey. url: https://developer.
android.com/studio/test/monkey.

[13] Yuanchun Li, Yang Ziyue, Guo Yao, and Chen Xiangqun. “DroidBot: A
Lightweight UI-guided Test Input Generator for Android”. In: Proceedings
of the 39th International Conference on Software Engineering Companion.
2017.

[14] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao,
Geguang Pu, Yang Liu, and Zhendong Su. “Guided, Stochastic Model-based
GUI Testing of Android Apps”. In: Proceedings of the 2017 11th Joint Meet-
ing on Foundations of Software Engineering. 2017.

[15] Tanzirul Azim and Iulian Neamtiu. “Targeted and Depth-first Exploration
for Systematic Testing of Android Apps”. In: Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming Sys-
tems Languages &#38; Applications. 2013.

[16] Ke Mao, Mark Harman, and Yue Jia. “Sapienz: Multi-objective Automated
Testing for Android Applications”. In: Proceedings of the 25th International
Symposium on Software Testing and Analysis. 2016.

[17] Razieh Nokhbeh Zaeem, Mukul R. Prasad, and Sarfraz Khurshid. “Auto-
mated Generation of Oracles for Testing User-Interaction Features of Mobile
Apps”. In: Proceedings of the 2014 IEEE International Conference on Soft-
ware Testing, Verification, and Validation. 2014.

[18] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang
Deng, and Tao Xie. “An empirical study of Android test generation tools
in industrial cases”. In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. 2018.

[19] Android Developers.Android Debug Bridge (adb). url: https://developer.
android.com/studio/command-line/adb.

[20] Android Developers. Logcat command-line tool. url: https://developer.
android.com/studio/command-line/logcat.

54

https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/logcat
https://developer.android.com/studio/command-line/logcat

	Introduction
	Android applications and Data Loss problems
	Introduction to Android activities
	Handling the activity state
	Data Loss problems
	Pervasiveness of Data Loss problems

	State of the art of Android testing
	State-of-the-art test case generation  techniques
	Random exploration strategy
	Model-based exploration strategy
	Systematic exploration strategy

	Data Loss problem detection nowadays

	Development
	The decision of the tool
	Approach overview
	Implementation
	Events
	Oracles
	Exploration strategy
	Report generation


	Experimental evaluation
	Study setup
	Experimentation work
	Results
	Activity coverage
	Data Loss problems
	Oracles


	Conclusions

