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Chapter 1
Introduction

During the last decade, the number of multimedia contents produced every day
has considerably increased due to the growing diffusion of digital devices, such as
digital cameras and smartphones. Nowadays, images and videos are widely used in
different fields, ranging from social media to self-driving cars. Although modern
cameras are able to capture high-quality images and videos, there are some cases
in which the quality of these contents is significantly reduced. When an image
is captured in poor light conditions, free electrons within the acquisition device
may corrupt the digital signal, introducing noise. When capturing dynamic scenes,
camera movements during the acquisition process and poor focus selection may
produce blurred contents. In addition, compression algorithms are often used to
reduce memory occupation of both images and videos, but they also introduce
visible artifacts such as blocking, contouring and ringing effects. In all these
examples, the quality of images and videos is reduced because of artifacts damaging
their contents, causing problems to both user experience and many computer vision
tasks.
Convolutional neural networks (CNNs) have recently shown incredible results
in many computer vision tasks, from image classification to video segmentation,
outperforming traditional methods. Such success has led more and more researchers
and industries to invest time and money in developing deep neural networks to
address different real-world problems.
For these reasons, several deep learning approaches to restore the quality of degraded
images and videos have been introduced in the literature under the name of image
and video restoration methods.
Video restoration aims to recover the clean video sequence from its degraded version.
Based on the degradation operators affecting the video sequence, such as noise or
blur, there are different video restoration tasks: video denoising aims to remove
noise from video frames; video deblurring has the purpose of restoring blurred
contents; video compression artifact reduction has the objective of recovering the
original frames removing artifacts introduced by compression algorithms. Despite
many methods to restore videos affected by different artifacts have been proposed
in the literature, the vast majority of them are designed to deal with a specific
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CHAPTER 1. INTRODUCTION

distortion type. Such methods produce excellent results on videos affected by the
considered artifacts, but they may produce unacceptable results when multiple
artifacts are present. For instance, existing approaches for video compression
artifact reduction do not consider the case of noisy videos, in which compression
algorithms produce artifacts that are more difficult to remove. Therefore, having a
single framework able to restore videos even when they are affected by multiple
artifacts simultaneously can be very useful.
Possible applications are in mobile devices, such as smartphones, frequently used
to capture a wide variety of scenes in different contexts, in videoconferencing
software, in which video frames are usually compressed to reduce bandwidth, and
in surveillance cameras, in which videos are often captured in poor light conditions.

1.1 Content of the thesis
This thesis sets the goal of developing a deep neural network able to restore multi-
distorted videos, that is, videos corrupted by multiple degradation operators. To
this end, the state of the art of video restoration has been deeply investigated, and
a promising approach for video denoising has been selected as baseline model and
further studied to extract its best characteristics, allowing the design of Multi-
distorted Video Restoration Network, called MdVRNet.
MdVRNet is a two-stage restoration network that progressively aligns adjacent
frames, allowing to extract both spatial and temporal information from the target
frame and its adjacent ones. The first restoration stage pays more attention to
single pixel restoration, due to its limited temporal information, while the second
restoration stage pays more attention to restoring local areas, as it has a more
complete vision of the entire scene. MdVRNet exploits an original distortion
parameter estimation module specifically devised to obtain information about
degradation operators affecting the video sequence to make the restoration process
more robust. The proposed framework uses a novel multi-scale restoration block to
extract features at different scales using two parallel streams: the full-resolution
stream learns fine pixel dependencies for finer detail reconstruction, while the
low-resolution stream learns coarse pixel dependencies to make the most of the
semantic in local areas. In addition, it uses an attention mechanism to weight the
features extracted by the two parallel streams according to their importance in
reconstructing the target frame.
An extensive experimentation has been carried out with different purposes, including
but not limited to assessing the effectiveness of the proposed MdVRNet in restoring
videos affected by multiple distortions, noise and compression artifacts to be precise.
From the results, it emerged that providing MdVRNet with information related to
degradation operators using the parameter estimation module integrated into the
framework allows to increase the restoration performance. Moreover, also the novel
multi-scale restoration block helps improve the results, showing the usefulness of
having two parallel branches working at different scales and a mechanism to weight
the extracted features according to their importance in reconstructing the target
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frame.
The rest of this thesis is structured as follows: Chapter 2 introduces the most
common degradation operators that can reduce the quality of images and videos;
Chapter 3 presents several state-of-the-art approaches based on deep learning
techniques for both image and video restoration, as well as for contrast enhancement,
reporting the architectures they use and their main ideas; Chapter 4 describes the
methodological approach for video restoration followed in this thesis that allowed
to design the MdVRNet framework, starting from the analysis of characteristics
and components of the video restoration methods presented in the previous chapter
and concluding with a detailed description of the method proposed to restore multi-
distorted videos; Chapter 5 reports all the experiments carried out to evaluate
different aspects of both the baseline model and the proposed MdVRNet, mentioning
interesting considerations based on the obtained results; Chapter 6 concludes the
thesis by briefly summarizing all the contents presented in the previous chapters
and mentioning possible future work.

3



Chapter 2
Degradation operators

This chapter introduces the most common degradation operators that can reduce
the quality of images and videos, mentioning the possible causes and showing
some examples. Such decrease in quality can negatively impact user experience or
make some computer vision tasks fail when the processed multimedia contents are
expected to be of high quality.
More in detail, Section 2.1 presents the problem of noise, Section 2.2 addresses
the problem of blur, Section 2.3 describes the problem of artifacts introduced by
compression algorithms and, finally, Section 2.4 shows how the artifacts change
when multiple distortions are present, justifying why a method able to handle
artifacts introduced by multiple degradation operators is needed.

2.1 Noise
When images are captured by camera sensors, the output signal of some of these
sensors may be corrupted by noise. There are different sources of noise in images.
For instance, free electrons within acquisition devices can alter the digital signal,
and such alteration becomes more visible when the signal entering the sensors is
weak, i.e. there is not enough light. This is why noise is more present in low-light
images rather than in bright ones.
Noise can be either additive or multiplicative. Let X be the original image, N the
additive noise and I the noisy observation, the noise degradation model can be
formally defined as I = X +N . There are different types of additive noise, additive
white Gaussian noise (AWGN) and impulsive noise are the most commonly treated
ones. Additive white Gaussian noise manifests itself in random perturbations of
pixel values depending on the noise intensity. It is defined by two parameters, the
mean µ and the standard deviation σ. Usually, the mean is considered as zero,
while the value of σ determines the intensity of the noise: the higher the value,
the higher the noise intensity. Impulsive noise, commonly called salt-and-pepper
noise, manifests itself in random pixels changed to 0 (salt) or 255 (pepper). It is
defined by the density parameter ρ, which represents the percentage of noisy pixels.

4
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Examples of images affected by additive white Gaussian noise and impulsive noise
are shown in Figure 2.1.

(a) Original (b) Additive white Gaussian
noise with µ = 0 and σ = 50

(c) Impulsive noise with ρ =
0.1

Figure 2.1: Example of images affected by additive white Gaussian noise and
impulsive noise

In this thesis work, only additive white Gaussian noise has been considered because
it is the most common type of noise several video denoising approaches have been
designed for.

2.2 Blur
There are different causes of blurred images, such as atmospheric distortion motions,
optical aberrations, motion and so on. Motion blur is one of the most common
problem when taking photos. For example, camera shaking and fast object motion
can degrade the image quality by producing blurred contents. Moreover, when an
image is captured by camera devices, some points are in focus while others may
not, thus causing out-of-focus blurring. Out-of-focus blurring is space-invariant in
those cases in which the surface of a flat object is parallel to the image plane, but
it may not be uniformly distributed, as there are some objects in focus while others
are not [1].
Let X be the original image, K a blur kernel and B the blurred observation, the
blur degradation model can be formally defined as B = K ×X, where × denotes
the 2D convolution operation.
Due to the limited availability of real data for both image and video deblurring,
synthetic samples must be generated in order to train deep neural networks. There
are different ways to create synthetic data for this task. For example, out-of-focus
blur can be simulated by means of Gaussian kernels, which are defined by two
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(a) Original (b) Blurred using a Gaussian
kernel with σ = 6

(c) Blurred using a linear mo-
tion kernel with θ = 45 and
L = 20

Figure 2.2: Example of images blurred using a Gaussian kernel and a linear motion
blur kernel

parameters: the kernel dimension and the value of the standard deviation σ. It is
worth mentioning that the kernel dimension can be derived from the value of σ,
hence the latter is the only parameter to specify. To simulate motion blur, it is
possible to design either linear or non-linear motion kernels. Linear motion kernels
are defined by θ, which represents the blur direction, and L, which represents
the blur length. Non-linear kernels are much more complex, requiring specifically
designed functions. Figure 2.2 shows an example of the same image blurred with a
Gaussian kernel and a linear motion blur kernel.
In this thesis, among the different types of blur degradation, only out-of-focus blur
has been considered because it can be easily synthesized using Gaussian kernels.

2.3 Compression
Compression algorithms are fundamental to store images and videos in memory
limited devices. There are several compression methods applicable to both videos
and images, and they can be mainly divided into two classes: lossless methods and
lossy methods. Lossless methods can entirely recover the original image from the
compressed one. Instead, lossy methods, such as JPEG, remove high-frequencies
from images and do not allow to recover the exact uncompressed image: they
are, indeed, lossy. The JPEG compression acts by dividing an image into 8 × 8
blocks and removing high-frequencies from each block individually by decomposing
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them with a discrete cosine transform (DCT) based method. The entity of the
compression is controlled by a quality factor q in the [0, 100] range: low values
mean high compression, high values mean low compression. When q is very low,
the vast majority of high-frequencies within each block are removed, producing
blocking artifacts.

(a) Original (b) q = 30 (c) q = 10

Figure 2.3: Example of images compressed using the JPEG algorithm with different
values of the quality factor q

Figure 2.3 shows examples of blocking artifacts arising when an image is compressed
with different values of q. It is worth mentioning that the size of the original image
is about 800 KB, the size of the image compressed with q = 30 is about 56 KB
and the size of the image compressed with q = 10 is about 28 KB.
Compressing a video sequence with the JPEG algorithm means splitting it into
single frames and treating each frame independently. Moreover, some compression
methods, such as AVC and HEVC, use inter-frame compression taking advantage of
temporal redundancy between adjacent frames to enable higher compression rates,
producing quality fluctuation among frames, i.e. some frames are more compressed
than others.
This thesis is built on the constraint that all the frames of a video sequence should
have the same quality after being compressed. This is done in order to address a
worst-case scenario where no cross-frame information is available. Hence, among
all compression methods, the JPEG compression has been chosen because it is
widely used, lossy and applicable to each frame independently.
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2.4 Multiple distortions
As already said, compression algorithms, such as JPEG, are widely used to reduce
memory occupation, but applying such algorithms may introduce blocking artifacts.
Moreover, compression algorithms are often applied to images already corrupted
by other distortions, such as noise or blur, producing new types of artifacts.

(a) Additive white Gaussian
noise with σ = 50

(b) Gaussian blur with σ = 5 (c) JPEG compression with
q = 10

(d) Additive white Gaussian
noise with σ = 50 and JPEG
compression with q = 10

(e) Gaussian blur with σ = 5
and JPEG compression with
q = 10

Figure 2.4: Example of images affected by additive white Gaussian noise, Gaussian
blur, JPEG artifacts and combination of them

One may think that a possible solution for dealing with videos affected by multiple
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artifacts is that of restoring them by placing a sequence of different distortion-
specific restoration methods in cascade. For instance, a noisy and compressed
video can be restored by applying a compression artifact reduction method and a
denoising method in sequence, as compression artifacts are usually introduced after
noise and they should be removed first. However, the shape and the distribution of
the artifacts introduced by noise or compression algorithms are different from the
ones of artifacts that applying a compression method on a noisy video sequence
produces, thus restoring it using two artifact-specific models in cascade may not
produce good results.
Figure 2.4 shows five versions of an image corrupted by additive white Gaussian
noise, Gaussian blur, JPEG compression artifacts and combinations of them. In
this latter case, the JPEG algorithm is applied either to the noisy or the blurred
image. As shown, the artifacts in Figure 2.4(d) and 2.4(e), representing distortion
combinations, are more complex than the artifacts introduced by single distortions,
making the restoration problem more difficult to solve. This is why a restoration
approach able to restore videos even in the presence of multiple artifacts is needed.
It is worthwhile to mention that, having three different distortion types, several dis-
tortion combinations are possible. However, some of them have better application
than others in real-world scenarios. According to the image acquisition pipeline,
blur is the first distortion introduced, followed by noise and finally by compres-
sion artifacts. Following this observation, in this thesis only the combinations
noise/compression and out-of-focus blur/compression have been investigated.
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Chapter 3
State of the art

This chapter presents the state of the art of video restoration. In particular, several
approaches based on deep learning techniques are detailed under different aspects,
such as the key ideas and the architectures used.
It starts presenting some state-of-the-art approaches to single image restoration,
discussed in Section 3.1, and then it extends to the video domain in Section 3.2.
Finally, Section 3.3 briefly presents some state-of-the-art approaches to image and
video contrast enhancement, a task highly related to image and video restoration,
that are worth analyzing to gather more information about what exists in the
literature to enhance images and videos using deep learning techniques.
The following approaches are reported in order of the publication date of their
corresponding publications.

3.1 Image restoration
Before presenting the state-of-the-art approaches for video restoration, it is better to
introduce some works related to single images, as some video restoration approaches
are based on them.
Starting from 2014, due to the success of convolutional neural networks (CNNs) in
image classification, many researches have been designing deep learning frameworks
to deal with image restoration tasks, which include super resolution, deblurring,
denoising as well as compression artifact removal.

3.1.1 SRCNN
The first work that applied deep learning techniques to restore single images dates
back to 2014, when Dong et al. [2] proposed to use deep learning for single image
super resolution. They took inspiration from a traditional approach for image super
resolution [3] and showed that the same operations could be performed using a
CNN. Hence, they designed a simple architecture for image super resolution, taking
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the low-resolution image as input and producing the corresponding high-resolution
image as output.
The proposed architecture, named SRCNN, is shown in Figure 3.1. It consists of

Figure 3.1: Architecture of SRCNN for image super resolution [2]

three convolutional layers: the first layer extracts patches from the low-resolution
input image and maps them into a set of feature maps; the second layer applies
a non-linear mapping to map the input feature maps into another set of feature
maps, which conceptually are the representation of the extracted patches in a high-
resolution space; the third layer, finally, aggregates these high-resolution patches
to generate the final high-resolution image.
Before feeding the image to the network, it is upscaled using bicubic interpolation
so that the input spatial dimension is the same as the desired output one. Note
that the proposed network does not perform any downsampling, keeping the spatial
dimension of the feature maps fixed.

3.1.2 ARCNN
In 2015, Dong et al. [4] extended SRCNN [2] proposing a new architecture, named
ARCNN, capable of reducing compression artifacts. They noticed that, when
dealing with compression artifacts, the feature maps extracted from the first layer
of SRCNN [2] were too noisy, hence inadequate for an accurate mapping. To solve
this problem, the authors inserted an additional convolutional layer after the first
convolutional layer of SRCNN [2] to perform feature enhancement. Intuitively,
such layer enhances the features extracted from the input image, improving the
mapping accuracy.
An overview of ARCNN is given by Figure 3.2. As shown, the architecture of
ARCNN is very similar to SRCNN [2] except for the additional convolutional layer
for feature enhancement.
Besides introducing ARCNN, they noticed that, when the compression factor was
quite high, the architecture they designed had convergence problems. To address
such problem, they experimented the “easy-hard transfer” for weight initialization:
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Figure 3.2: Architecture of ARCNN to remove compression artifacts from images
[4]

instead of training the network from scratch when the compression factor was
high, they initialized the network with the weights obtained from networks trained
with lower compression factors. This approach effectively solved the convergence
problem.

3.1.3 DNCNN
In 2016, Zhang et al. [5] proposed to use a CNN for single image denoising. While
previous works on single image denoising tried to recover the clean image from
its noisy counterpart, they exploited residual learning [6] to train a CNN, called
DNCNN, to learn the noise image that added to the clear image produces the input
noisy image. Therefore, as they assumed the noise to be additive, the clean image
could be easily obtained by subtracting the predicted noise image from the input
noisy image. To design their network, they adapted the VGG architecture [7] to
make it able to handle image denoising.
The DNCNN architecture is reported in Figure 3.3. Depending on the noise level,
DNCNN can be more or less deep. Indeed, when the noise level is high, the deeper
network performs better than the shallower one.

Figure 3.3: Architecture of DNCNN for image denoising [5]

In addition to the use of residual learning [6], the authors also used batch nor-
malization [8] both to speed up the training process and to boost the denoising
performance. Zhang et al. [5] also demonstrated that their network could be
trained to tackle other image restoration tasks, such as blind Gaussian denoising,
JPEG artifact removal and image super resolution.
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3.1.4 ESPCN
Shi et al. [9] improved SRCNN [2] by introducing a new way to perform upscaling,
in 2016. In particular, they stated that SRCNN [2] was computationally too
expensive because it increased the spatial resolution of images to work directly in
the full-resolution space. They also stated that the use of bicubic interpolation
to perform upscaling may not be suitable because it does not bring additional
information to solve the upscaling problem. Therefore, to address these drawbacks,
Shi et al. [9] proposed to increase the spatial resolution at the end of the network
using a novel sub-pixel convolutional layer, creating a new network architecture
called ESPCN.
As it is possible to see in Figure 3.4, the sub-pixel convolutional layer, also called
Pixel Shuffle layer, is applied at the end of the network, allowing the latter to
perform most of the work in the low-resolution space. This significantly reduces the
number of operations required to produce the final output. Moreover, employing a

Figure 3.4: Architecture of ESPCN for image super resolution [9]

sub-pixel convolutional layer, whose weights are learned during the training process,
allows ESPCN to learn the optimal upscaling operation enabling it to produce
better results.

3.1.5 DGCAR
Galteri et al. [10], in 2017, were the first to propose the use of Generative Adversarial
Networks [11] (GANs) to address the problem of compression artifact removal.
The GAN they designed, named DGCAR, is composed of a generator, which aims
to generate clean images starting from images affected by compression artifacts, and
a discriminator, which aims to improve the generator performance. Figure 3.5(a)
shows the used generator, while Figure 3.5(b) shows the used discriminator. Instead
of using MSE as loss function, which is widely employed in many deep learning
tasks, they designed a specific loss based on SSIM [12], allowing to perceptually
improve the results.
In addition, instead of feeding the entire image to the discriminator, they just fed
image sub-patches. This because, when dealing with compression artifacts, it is not
important to see the entire image, as compression algorithms usually decompose
images into patches and artifacts are typically created within them.
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(a) Generator (b) Discriminator

Figure 3.5: Generator and discriminator composing the DGCAR architecture to
remove compression artifacts from images [10]

3.1.6 DeepDeblur

Figure 3.6: Architecture of DeepDeblur for image deblurring [13]

In 2017, Nah et al. [13] proposed a novel architecture to tackle the image deblurring
problem. Previous works on image deblurring estimate blur kernels and then apply
them to recover the latent clean image. However, blur kernel estimation can be
difficult in some situations and, when such estimation is not correct, using these
kernels to restore blurred images may cause visible artifacts. To avoid this problem,
Nah et al. [13] adopted a kernel-free model and designed a multi-scale architecture,
named DeepDeblur, to mimic conventional coarse-to-fine optimization methods.
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The proposed framework is shown in Figure 3.6. DeepDeblur uses three scales,
each of which ideally produces the sharp image at that scale. Such sharp image
is upscaled and concatenated with the blurred image at the higher scale. Instead
of upscaling the outputs of the lower scales using non-learnable techniques, such
as bilinear or bicubic interpolation, they adopted upconvolutions. Indeed, since
blurred and sharp images share the same low frequencies, the use of upconvolutions
may help remove redundancy.
They also designed a specific loss to train their network in such a way that the
output at each scale is as similar as possible to the ground truth at that scale.
Moreover, to improve the deblurring performance, they trained DeepDeblur in an
adversarial way by designing an appropriate discriminator.

3.2 Video restoration
The main difference between image and video restoration is that, when dealing
with videos, both spatial and temporal information must be taken into account
to produce optimal results. In fact, one may see video restoration as multiple
image restoration, in which every frame is restored independently. However, this
method cannot exploit temporal information between frames, which is important
to produce high-quality results and avoid flickering artifacts.
The following approaches tackle different video restoration tasks, that is, temporal
frame interpolation, super resolution, compression artifact reduction, denoising and
deblurring. Some works address just a single task, while others address more tasks.
Nevertheless, it is important to notice that, except for one method, none of them
deals with multiple artifacts jointly.

3.2.1 TOFlow
The work carried out by Xue et al. [14] in 2017 represents one of the first attempts
to apply image restoration tasks to videos using deep learning. They designed a
framework to deal with four restoration tasks, that is, temporal frame interpolation,
super resolution, denoising and compression artifact removal.
Their framework, TOFlow, is shown in Figure 3.7. It consists of three modules:
flow estimation, transformation and image processing. In brief, using its flow
estimation module, TOFlow estimates pixel motion between the target frame and
each of its neighboring frames. Then, the transformation module warps each
neighboring frame to the target one using the estimated pixel motion. Finally,
the information contained in the warped frames is used to restore the target one
using the image processing module. The flow estimation module estimates the
movement between the target frame and a frame of its neighborhood. To do this,
TOFlow exploits SpyNet [15], a deep neural network for optical flow estimation
that uses a coarse-to-fine spatial pyramid structure to handle large motion. The
transformation module makes use of a spatial transformer network [16] (STN),
which is a differentiable bilinear interpolation layer, to warp all the neighboring

15



CHAPTER 3. STATE OF THE ART

Figure 3.7: TOFlow framework for video temporal frame interpolation, denoising,
super resolution and compression artifact removal [14]

frames to the target one, i.e. each frame is transformed into the viewpoint of the
target one. The image processing module restores the target frame using both the
spatial and temporal information extracted from all the warped frames.
An important aspect of TOFlow is that it can be trained end-to-end, allowing
to propagate the gradient from the image processing module back to the flow
estimation module.

3.2.2 DeBlurNet
In 2017, Su et al. [17] proposed DeBlurNet to address blur produced by camera
shaking. Unlike TOFlow [14], DeBlurNet is able to exploit spatial and temporal
information coming from multiple frames to restore the target one without using
specific modules for explicit motion estimation and compensation.
Figure 3.8 shows the architecture of DeBlurNet. It is an encoder-decoder architec-
ture that takes a stack of consecutive frames as input and directly estimates the
clean target frame using spatial and temporal information coming from both the
target frame and its adjacent ones.
DeBlurNet is composed of three types of layers: down-convolutional layers compress
the spatial resolution of the features while increasing the number of feature maps;
flat-convolutional layers perform non-linear mapping while preserving both the
spatial resolution and the number of feature maps; up-convolutional layers increase
the spatial resolution while reducing the number of feature maps.
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Figure 3.8: Architecture of DeBlurNet for video deblurring [17]

Su et al. [17], with their work, demonstrated that high-quality results could be
obtained even without explicitly estimating pixel motion and performing frame
alignment.

3.2.3 VESPCN
In 2018, Caballero et al. [18] combined the efficiency of sub-pixel convolutions
[9] with the performance of spatial transformer networks [16] to obtain a fast
and accurate framework for video super resolution. They extended ESPCN [9],

Figure 3.9: Architecture of VESPCN for video super resolution [18]

originally proposed for single image super resolution, to the video domain, creating
VESPCN.
VESPCN performs pixel motion estimation using spatial transformer networks [16],
uses bilinear interpolation to warp the neighboring frames to the target one, employs
an adapted ESPCN [9], called spatio-temporal ESPCN, to fuse the information,
performs upscaling using a sub-pixel convolutional layer [9] and produces the
restored frame.
An overview of VESPCN is given by Figure 3.9. The pixel motion estimation
module was designed following the coarse-to-fine approach, which is well known to
be effective in estimating pixel motion in case of large motion.
VESPCN is end-to-end trainable because all its modules are differentiable. It is
worthwhile to mention that Caballero et al. [18] studied how performance changes
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when more frames are used as input. They concluded that using more than five
consecutive frames does not lead to any performance improvement.

3.2.4 DUF
Another contribution to video super resolution was given by Jo et al. [19] in
2018. Their network, DUF, implicitly uses motion information between consecutive
frames to generate dynamic upscaling filters to upsample the target frame.
Since many approaches for video super resolution perform upscaling using bilinear
or bicubic interpolation, which can hardly restore sharp details and textured
regions, Jo et al. [19] introduced dynamic upscaling filters to perform the upscaling
operation. Inspired by dynamic filter networks [20], dynamic upscaling filters are
locally and dynamically generated based on the spatio-temporal neighborhood of
each pixel in the low-resolution frames. Conceptually, dynamic upscaling filters
are created based on pixel motions and, thus, they can produce better results than
simply using bilinear or bicubic interpolation to perform upsampling. Each pixel in
the low-resolution target frame has its own dynamic upscaling filters, whose number
depends on the upscaling factor. Moreover, as the result of applying dynamic
upscaling filters to a frame lacks of sharpness, DUF employs residual learning [6]
to learn high frequency details that are then added to recover sharpness.
The proposed architecture is shown in Figure 3.10. As shown, DUF uses two different

Figure 3.10: Architecture of DUF for video super resolution [19]

networks to generate dynamic upscaling filters and to learn high-frequencies.
However, most of the weights between these two networks are shared.
It is important to mention that, to capture spatio-temporal information, DUF uses
3D convolutions, as they are known to be more suitable than 2D convolutions to
extract features from video data.

3.2.5 DVDNet
In 2019, Tassano et al. [21] introduced DVDNet for video denoising. Their
framework consists of three steps: single image denoising, pixel motion estimation
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and warping and multiple image denoising. Single image denoising is performed
using a spatial denoiser, whose structure is shown in Figure 3.11(a), considering
one frame at a time. Such operation is important because, when dealing with noisy
frames, pixel motion estimation becomes a very difficult task. So, removing some
noise from each single frame is highly beneficial for the motion estimation step.
In addition to the noisy frame, the spatial denoiser takes a noise map as input,

(a) Spatial denoiser (b) Temporal denoiser

Figure 3.11: Spatial and temporal denoisers used by DVDNet [21]

encoding the estimated per-pixel standard deviation of the noise, which allows to
better handle spatially varying noise. In order to estimate pixel motion between
the target frame and a frame of its neighborhood and align them, DVDNet relies on
DeepFlow [22]. Finally, when all the adjacent frames are warped to the target one,
a temporal denoiser, shown in Figure 3.11(b), is used to capture spatio-temporal
information and generate the restored frame. The noise map used for the spatial
denoiser is also used for the temporal denoiser.
The overview of the DVDNet framework is reported in Figure 3.12. The spatial

Figure 3.12: DVDNet framework for video denoising [21]

and temporal denoisers are trained separately: first, the spatial denoiser is trained
to remove noise from each single frame, then, the temporal denoiser is trained using
the neighboring frames warped to the target one to produce the final output.

3.2.6 ViDeNN
Claus et al. [23], in 2019, extended DNCNN [5], originally proposed for single
image denoising, to perform video denoising. Similarly to DVDNet [21], they
designed a CNN, called ViDeNN, consisting of two denoisers: a spatial denoiser
and a temporal denoiser. However, in contrast to DVDNet [21], ViDeNN does not
use any specific module for pixel motion estimation and compensation, which are
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implicitly handled by the network itself.
As illustrated in Figure 3.13, ViDeNN first performs single frame denoising, then
the results are stacked and fed to the temporal denoiser producing the restored
target frame. As in DVDNet [21], the spatial and temporal denoisers are trained

Figure 3.13: Architecture of ViDeNN for video denoising [23]

separately.
ViDeNN is able to perform blind Gaussian denoising, that is, it can remove Gaussian
noise with unknown values of standard deviation.
In their work, Claus et al. [23] also studied how performance changes when more
frames are used as input. As a result, they obtained that inputting more than
three frames to ViDeNN does not lead to any performance improvement.

3.2.7 EDVR
In 2019, Wang et al. [24] won all the four tracks of the NTIRE19 video restoration
and enhancement challenge [25], i.e. video super resolution, deblurring and com-
pression artifact removal, with their EDVR.
The architecture of EDVR is illustrated in Figure 3.14. The cores of the proposed
network are the alignment module, known as pyramid, cascading and deformable
convolutions [26] (PCD), and the fusion module, known as temporal and spatial
attention [27] (TSA).
The PCD module, shown in Figure 3.15(a), uses a coarse-to-fine approach to handle
large motion. It is based on two well known principles in optical flow estimation:
pyramidal processing and cascading refinement. In particular, at each level of the
pyramid, deformable convolutions [26] are used to align a neighboring frame with
the target one. Features of different frames are first aligned in lower scales and
then, along with the learned offsets, are propagated to higher scales, enabling a
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Figure 3.14: Architecture of EDVR for video super resolution, denoising, deblurring
and compression artifact removal [24]

more precise motion compensation. An additional deformable convolution [26]
is added to improve robustness of the alignment. It is worth mentioning that
upscaling in the PCA module is performed using bilinear interpolation. In their
experiments, they used three pyramid levels.

(a) Pyramid, cascading and deformable
convolutions (PCD)

(b) Temporal and spatial attention
(TSA)

Figure 3.15: Pyramid, cascading and deformable convolutions (PCD) and Temporal
and spatial attention (TSA) modules used by EDVR [24]

The TSA module, shown in Figure 3.15(b), is used to aggregate information coming
from the aligned frames. The idea behind temporal attention is that of weighting
the features according to their importance, because not all the features coming from
the aligned neighboring frames carry information useful to reconstruct the target
frame. The same consideration applies also to spatial attention, because there are
some spatial locations more useful than others and, hence, they must be weighed
accordingly. More in detail, the temporal attention computes the element-wise
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correlation between the features coming from the target frame and the features
coming from one of its adjacent frames. The computed correlation is used to weight
each feature of the neighboring frames, giving more weight to the features that are
more similar to the ones of the target frame. Then, the obtained weighted features
are fused and the spatial attention is computed, which assigns a weight to each
location in each channel to better exploit cross-channel dependencies.
Besides the PCD and the TSA modules, EDVR uses a pre-deblur module to process
each frame before aligning them, improving alignment accuracy. It also uses a final
reconstruction module, which is a cascade of residual blocks that allows to perform
the final refinement. For efficiency reasons, EDVR first downsamples the input
frames to work in a low-resolution space. The spatial dimension is restored just at
the end of the network.
Wang et al. [24] noticed that a single EDVR is able to obtain state-of-the-art
performance in all the considered video restoration tasks. However, better perfor-
mance can be obtained by applying a two-phase strategy: the outputs of the first
EDVR are inputted to another EDVR. This strategy appears to be effective when
dealing with severely distorted videos.
EDVR is end-to-end trainable and it is able to restore videos even in the presence
of multiple artifacts.

3.2.8 FastDVDNet

Figure 3.16: Architecture of FastDVDNet for video denoising [28]

More recently, in 2020, Tassano et al. [28] improved their DVDNet [21] proposing
FastDVDNet. Instead of using an explicit motion estimation stage, FastDVDNet
mainly improves DVDNet [21] by performing implicit motion estimation and com-
pensation between frames. This allows FastDVDNet to remove artifacts caused
by wrong motion estimations, also increasing its efficiency. Moreover, in contrast
to their previous work in which the spatial and temporal denoisers are trained
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separately, FastDVDNet is end-to-end trainable. Similarly to DVDNet [21], FastD-
VDNet takes the noise map of the target frame as input to better handle spatially
varying noise.
The network proposed by the authors is a two-step restoration network: the first
denoising step is composed of three denoising blocks taking a sequence of three
frames and the noise map of the target frame as input, while the second denoising
step consists of a single denoising block taking the outputs of the denoising blocks
of the first denoising step and the same noise map as input. Note that all the three
denoising blocks of the first denoising step share the same weights.
The architecture of FastDVDNet is shown in Figure 3.16, while Figure 3.17 shows
the detailed composition of each denoising block. As shown, the upscaling process is
done by means of sub-pixel convolutional layers [9]. FastDVDNet takes five frames
as input and, as shown in Figure 3.16, each denoising block of the first denoising
step always uses information about the target noisy frame, as it is inputted to each
denoising block.

Figure 3.17: Denoising block used by FastDVDNet [28]

In their work, Tassano et al. [28] also studied the impact that applying a single-step
restoration rather than a two-step restoration has on the denoising performance,
concluding that the two-step restoration allows to obtain better results.

3.2.9 STDF
Deng et al. [29], in 2020, proposed a new framework to remove compression
artifacts from videos. They introduced STDF, a new spatio-temporal deformable
fusion schema to remove compression artifacts based on the idea of deforming
the spatio-temporal sampling positions of standard convolutions, making them
able to capture more relevant information. Besides, they avoided explicit motion

23



CHAPTER 3. STATE OF THE ART

estimation so that the restoration process is not affected by wrong estimations. In
contrast to previous approaches, which consider just a limited neighborhood of a
given target frame, STDF considers the entire video sequence.

Figure 3.18: STDF framework to remove compression artifacts from videos [29]

As illustrated in Figure 3.18, STDF is composed of two modules: the spatio-
temporal deformable fusion (STDF) module and the quality enhancement (QE)
module. The first module uses deformable convolutions [26] to learn position-
specific offsets that allow to deform standard convolution, making them able to
model complex geometric transformations. This allows STDF to pay more attention
to motion cues. The second module is a simple CNN that performs the restoration
of the target frame using the information extracted by the previous module.
As done by previous works, the network uses residual learning [6] to predict the
residual that is added to the compressed target frame to obtain the final result.

3.2.10 MFQE 2.0
Guan et al. [30], in 2020, improved their previous work [31] obtaining higher
performance on the task of video compression artifact removal. Their work is based
on the idea that, when dealing with compression artifacts arising from inter-frame
compression methods, there are some frames that are more compressed than others.
For this reason, given the target frame, it could be useful to find its high-quality
adjacent frames because they may contain information useful to reconstruct it.
Such high-quality neighboring frames are called “peak quality frames” (PQFs).
Following this idea, they designed a framework that first searches for the previous
and the subsequent PQFs of the target frame, then aligns them and finally uses
the information contained in the aligned PQFs to restore the target frame.
The overview of their framework, named MFQE 2.0, is illustrated in Figure 3.19.
MFQE 2.0 is composed of three modules: a biLSTM based PQF detector (PQF

24



CHAPTER 3. STATE OF THE ART

Figure 3.19: MFQE 2.0 framework to remove compression artifacts from videos [30]

(a) PQF detector (b) Motion Compensation subnet (MC-subnet)

(c) Quality Enhancement subnet (QE-subnet)

Figure 3.20: PQF detector, Motion Compensation subnet (MC-subnet) and Quality
Enhancement subnet (QE-subnet) used by MFQE 2.0 [30]

detector), a motion compensation subnet (MC-subnet) and a quality enhancement
subnet (QE-subnet). The first module, shown in Figure 3.20(a) is a bidirectional
LSTM [32] used to extract and model frame correlation. Thanks to its bidirec-
tionality, information can be extracted in both directions. Given the target frame,
the purpose of this module is that of computing the probability of its neighboring
frames of being PQFs. Such probabilities are then refined to be sure there is at
least a previous and a subsequent PQF of a given frame in a specified temporal
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window. It is worth mentioning that frames are not directly fed to this module, but
38 features related to compression domain and quality assessments methods [33]
are extracted and used to detect PQFs. The MC-subnet module, shown in Figure
3.20(b) performs motion estimation and compensation between the target frame
and the PQFs found by the previous module. This is done by means of a modified
spatio-temporal motion compensation architecture proposed by Caballero et al.
[9], in which Guan et al. [30] added the computation in full resolution to improve
alignment accuracy. Finally, when the PQFs are warped to the target frame, the
QE-subnet module, shown in Figure 3.20(c), performs multi-scale feature extraction
and restores the target frame.

3.2.11 EVRNet
Very recently, at the end of 2020, EVRNet was proposed by Mehta et al. [34].
EVRNet, which literally means “efficient video restoration network”, is able to
perform different video restoration tasks using few computational resources and in
a very fast way, making it suitable to run on edge devices. It is capable of dealing
with video super resolution, video denoising and compression artifact removal.
Figure 3.21 shows the EVRNet architecture. The proposed architecture consists of

Figure 3.21: Architecture of EVRNet for video super resolution, denoising and
compression artifact removal [34]

three modules: alignment, differential and fusion. The alignment module is used
to implicitly align frames using a pyramidal structure, allowing EVRNet to handle
large motion without the need to compute optical flow. The differential module
aims to learn high-frequency components, such as edges. Finally, the fusion module
combines the high-frequency components learned by the differential module and
the input target frame projected in an embedding dimension to produce the final
result.
Each module is a light-weight and shallow encoder-decoder architecture, as shown
in Figure 3.22(a). They are equal in construction, what changes is the number of
convolutional units (CU), shown in Figure 3.22(b).
The differential and fusion modules are inspired by traditional image enhancement
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(a) Encoder-decoder network

(b) Convolutional unit (CU)

Figure 3.22: Encoder-decoder network and convolutional unit (CU) used by EVRNet
[34]

methods, such as unsharp masking [35].
As it is possible to see from Figure 3.21, EVRNet outputs two frames: the restored
target frame and the latent target frame, which corresponds to the restored target
frame in an embedding dimension. Such latent target frame is used to predict the
next frame, making EVRNet auto-regressive, i.e. the output at time t is used as
input at time t+ 1.

3.3 Contrast enhancement
Contrast enhancement is an image processing technique that aims to improve the
perceptibility of objects in the scene by enhancing the brightness difference between
objects and their backgrounds.
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In the literature, several methods have been proposed to enhance contrast in both
images and videos. Such methods can be classified into three main categories:
histogram equalization methods try to enhance contrast using image histograms;
Retinex theory [36] based methods decompose the image into reflectance and
illumination, and contrast enhancement consists in manipulating the estimated
illumination; deep learning based methods enhance contrast by means of deep
neural networks, which learn the optimal operations given pairs of input and output
images.
Since 2017, researchers all over the world have started investing many resources to
build framework for contrast enhancement using deep learning techniques. The
following approaches have been introduced to address the problem of low-light
image and video enhancement, a branch of contrast enhancement that deals with
images and videos captured in low-light conditions.

3.3.1 LLCNN
Tao et al. [37] were the first to propose to use deep learning to enhance low-light
images, in 2017. Their network, LLCNN, is able to learn how to filter low-light
images with different kernels and combine multi-scale feature maps to generate
images that seem to be captured in normal-light conditions.
Figure 3.23 shows the architecture of LLCNN. The first convolutional layer is used

Figure 3.23: Architecture of LLCNN for low-light image enhancement [37]

to preprocess the input image and produce uniform input, while the last layer
generates the enhanced image. Between these two layers, several convolutional
modules are placed. Such convolutional modules, shown in Figure 3.24, are inspired
by Inception [38] and ResNet [6] and are designed to cope with the vanishing
gradient problem.
Since preserving textures in low-light image enhancement is very important and
the brightness is allowed to fluctuate around the ground truth, Tao et al. [37]
stated that SSIM [12] is the most suitable metric to optimize. For this reason, they
adopted a loss based on SSIM [12].
In their experiments, the authors tried to train their network with different number
of convolutional modules, concluding that the deepest LLCNN was the most
effective one in enhancing low-light images.

28



CHAPTER 3. STATE OF THE ART

Figure 3.24: Convolutional module used by LLCNN [37]

3.3.2 MBLLEN
Lv et al. [39], in 2018, addressed the main limitation of LLCNN [37], that is, it did
not consider the fact that noise may be introduced by camera sensors when images
are captured in low-light conditions. To do this, they proposed MBLLEN, which
is able to enhance low-light images while removing the noise introduced by poor
acquisition conditions.
MBLLEN is shown in Figure 3.25. It decomposes the enhancement problem into
different sub-problems related to different feature levels, which are solved to produce
the enhanced image via multi-branch fusion.

Figure 3.25: Architecture of MBLLEN for low-light image enhancement [39]

The proposed network is composed of three modules: the feature extraction module
(FEM), the enhancement module (EM) and the fusion module (FM). The first
module uses several convolutional layers and non-linear mapping to extract feature
maps for the other modules. The second module contains multiple subnets whose
number equals the number of layers in FEM. Each subnet is an encoder-decoder

29



CHAPTER 3. STATE OF THE ART

network that uses convolutions and upconvolutions to enhance the input image
at different feature levels. Note that all these subnets have the same structure
and are trained together with the rest of the architecture, but they are actually
different networks, that is, they do not share any weight. Finally, the last module
fuses the outputs of all the subnets in EM to merge the information and produce
the enhanced image.
In addition to MBLLEN, Lv et al. [39] proposed a novel loss function considering
structure information, context information and regional difference in the image:
the structural loss is based on SSIM [12]; the context loss is based on high-level
information that can be extracted using another CNN; the region loss is used to
pay more attention to low-light regions.
MBLLEN, as stated by its authors, can be easily extended to videos by replacing
2D convolutions with 3D convolutions in the feature extraction and enhancement
modules.

3.3.3 GLADNet
In 2018, Wang et al. [40] proposed GLADNet, a deep neural network that exploits
global illumination information and detail preservation to enhance low-light images.

Figure 3.26: Architecture of GLADNet for low-light image enhancement [40]

GLADNet can be divided into two modules, as shown in Figure 3.26: a global
illumination prediction module and a detail reconstruction module. The global
illumination prediction module applies an encoder-decoder network that reduces
the spatial dimension in such a way that the receptive field at the bottleneck will
be large enough to cover the entire image. This allows GLADNet to acquire a
global awareness of the whole illumination distribution. Then, the feature maps
are upscaled to obtain the feature maps for illumination prediction. To improve
efficiency, the input image is downscaled before feeding it to the network. The
feature maps obtained from the first module are used by the detail reconstruction
module, along with the input image, to reconstruct the details lost during the
downscaling process. This module outputs the enhanced image.
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3.3.4 CNN with simple reflection model
In 2019, Moon et al. [41] proposed a locally adaptive contrast enhancement method
using a CNN and a simple reflection model.
The proposed framework consists of four steps, as shown in Figure 3.27. The first
step is a low-contrast estimation step that generates the low-contrast probability
map to identify low-contrast regions. To do this, they created an encoder-decoder
network that takes the low-light image as input and produces the low-contrast
probability map as output. The second step is to create a contrast gray scale map
from the input image. This is achieved by using saliency-guided decolorization
methods [42] that are able to properly express contrast information. Then, the
third step is that of refining the low-contrast probability map to prevent halos and
undesired over-enhancement artifacts. This is done by means of guided filter [43],
which uses the contrast gray scale map as guide image. Finally, the last step is to
enhance the input image using the information contained in the refined low-contrast
probability map, following the reflection model.

Figure 3.27: Image enhancement framework proposed by Moon et al. for low-light
image enhancement [41]

3.3.5 Retinex-GAN
Shi et al. [44], in 2019, presented a framework to enhance low-light images based on
Retinex theory [36] and Generative Adversarial Networks [11] (GANs). In Retinex
theory [36], an image S is given by I ×R, where I is the illumination image and
R is the reflectance image. Hence, the objective here is to decompose the input
image S into I and R and enhance I to obtain the final result.
The proposed framework, as illustrated in Figure 3.28, is composed of a generator
and a discriminator. The generator includes the decomposition step, which aims to
split the input image into the illumination and the reflectance components, and the
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enhancement step, which tries to enhance the brightness of the image. Then, the
reflectance image and the enhanced illumination image are recombined to obtain
the final enhanced image. The discriminator is used to make the generated image
look more realistic.
To improve the results, the authors designed a multi-task loss that combines
adversarial loss, SSIM [12] loss and L1 loss.

Figure 3.28: Retinex-GAN framework for low-light image enhancement [44]

3.3.6 ALEN
Zhang et al. [45], in 2020, presented a novel attention-based neural network to
produce high-quality enhanced images from raw sensor data.

Figure 3.29: Architecture of ALEN for low-light image enhancement [45]

The proposed network, named ALEN and shown in Figure 3.29, uses spatial and
channel attention to take into account both local and global information. Spatial
attention is performed using non-local operations [46], which are used to make the
network have a global receptive field by aggregating different position information
in a feature map. This because the authors observed that a large receptive field is
fundamental to reduce color artifacts, but increasing it using several convolutional
layers is inefficient. The non-local operation is shown in Figure 3.30(b). Channel
attention, performed using Squeeze-Excitation blocks [47], weights the contribution
of each feature map, allowing ALEN to refine redundant color features. The block
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used for channel attention is shown in Figure 3.30(c). Spatial and channel attention

(a) Mixed-attention block (b) Non-local operation (c) Channel-attention block

Figure 3.30: Mixed-attention block, non-local operation and channel-attention
block used by ALEN [45]

are applied in ALEN using a mixed-attention, as shown in Figure 3.30(a), which
first uses spatial attention to obtain features with a wider range of information in
the spatial domain and then uses channel attention to generate the final feature
representation.
Moreover, to reduce the information loss and select useful features, they replaced
max pooling layers with a novel inverted shuffle layer (ISL), which performs the
inverted operation of the Pixel Shuffle layer [9].
As other approaches, the final loss combines both the L1 loss and the SSIM [12]
loss.

3.3.7 DALE
In 2020, Kwon et al. [48] introduced DALE, a new dark region-aware low-light
image enhancement framework that recognizes dark regions in the input image and
intensively enhances their brightness.
DALE, as shown in Figure 3.31, consists of two networks: a visual attention network
and an enhancement network. The visual attention network produces an attention
map able to recognize dark regions. To train such network, the authors created a
dataset using a local illumination synthesis method based on super-pixels, which
are randomly darkened. Then, the enhancement network takes the low-light image
and the estimated visual attention map of that image as input, and produces the
enhanced image.
It is worth mentioning that these two networks are trained separately.
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Figure 3.31: DALE framework for low-light image enhancement [48]

3.3.8 NEID
At the beginning of 2021, Jiang et al. [49] introduced NEID, a deep neural network
that enhances both brightness and details of low-light images simultaneously.
NEID is able to perform both low-light image enhancement and super resolution,
producing normal-light images with rich details and high visual quality.

Figure 3.32: NEID architecture for simultaneous low-light image enhancement and
image super resolution [49]

In brief, as it is possible to see in Figure 3.32, NEID is a two-stream network
consisting of two branches deployed in parallel: the Light Enhancement branch (LE)
and the Detail Refinement branch (DR). The LE and DR branches extract features
that are then fused by a Feature Fusion module (FF). The Light Enhancement
branch, as the name suggests, is used to enhance the brightness of the input image.
However, since the LE branch is not able to recover high-resolution and detail-rich
images from the low-resolution input, as the upscaling module used in the LE
branch does not bring enough information, the Detail Refinement branch is used
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to reconstruct fine-grained detail information. To enhance the brightness and
produce a high-resolution version of the input image, the outputs of the LE and
DR branches are fused by means of the FF module, which weights the features
obtained by the LE branch guided by the features obtained by the DR branch.
To train their network, Jiang et al. [49] combined the Huber loss [50], the MSE
loss and the Color loss.

3.3.9 Zero-DCE

Figure 3.33: Zero-DCE framework for low-light image enhancement [51]

Very recently, in 2021, Li et al. [51] presented a novel method to enhance low-light
images formulating the problem of light estimation as a task of image-specific
curve estimation using deep learning. One of the main advantages of the proposed
framework, called Zero-DCE and shown in Figure 3.33, is that of being zero-
reference, i.e. it does not require any paired or unpaired data for the training
process. This is possible thanks to a carefully designed non-reference loss function,
which takes into account a spatial consistency loss, an exposure control loss, a color
constancy loss and an illumination smoothness loss.
In brief, Zero-DCE uses a deep neural network to estimate pixel-wise and high-
order curves for dynamic range adjustment of a given low-light image. Then, the
framework iteratively maps all the pixels of the input image to new pixels according
to the estimated curves to obtain the enhanced image.
The key components of Zero-DCE are the light-enhancement curve, which is
monotone and differentiable, the deep neural network DCE-Net, which is used to
estimate the pixel-wise curve parameter maps to be applied to the input image
to obtain its enhanced version, and the non-reference loss function, which enables
non-reference learning in DCE-Net.
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Chapter 4
Methodological approach for video
restoration

This chapter presents the methodological approach followed in this thesis in order
to build a new deep video restoration network able to restore videos even in the
presence of multiple artifacts.
It is organized as follows. Section 4.1 describes the main characteristics and
components of video restoration approaches that emerged from a deep analysis
of the approaches presented in Chapter 3. Section 4.2 presents the motivations
that supported the decision of using FastDVDNet [28] as baseline model, whereas
Section 4.3 explains this architecture more in detail, better clarifying its main
components. Finally, Section 4.4 details the approach proposed in this thesis work,
named Multi-distorted Video Restoration Network, to restore videos affected by
multiple distortions.

4.1 Characteristics and components for video re-
storation

Several state-of-the-art approaches for video restoration have been presented in
Chapter 3. An in-depth analysis of these methods is needed in order to have a clear
picture about how some important operations are performed and to understand the
common ideas behind every video restoration framework. Such analysis concerns
how the methods under study perform motion estimation and frame alignment,
how they address the problem of different artifact intensities, what their basic
components are, such as architectural structures and the way they perform specific
operations, and, finally, the loss functions they use.
In general, a video restoration framework commonly performs the following opera-
tions:

1. single frame restoration (optional): each video frame is restored independently
in order to make the next steps easier;
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2. motion estimation: given the target frame and its adjacent frames, the pixel
motion between them is estimated, that is, each pixel in the target frame is
detected within its neighboring frames in order to compute a motion vector
representing how pixels have moved;

3. frame alignment: using the pixel motion estimation computed by the previous
step, each adjacent frame is warped to the target one, i.e. it is transformed
into the viewpoint of the target frame;

4. information extraction and fusion: given the target frame and its aligned
adjacent frames, spatial and temporal information is extracted and fused to
restore the target frame.

The first operation is marked as optional because it is not performed by all the
methods, but some of them initially restore single frames because, as they report,
the motion estimation operation is known to be challenging, and it could become
even more difficult when frames are severely distorted. Examples of methods that
try to restore single frames as first step are DVDNet [21] and ViDeNN [23], as
already mentioned in Subsection 3.2.5 and 3.2.6.

4.1.1 Motion estimation and frame alignment
The first analysis regards how the state-of-the-art approaches estimate pixel motion
and use such estimation for frame alignment. This allows to understand whether
there is a specific technique for these operations that is more suitable for a particular
restoration task.
Motion estimation and frame alignment are fundamental tasks that any video
restoration approach must address. Motion estimation is the process of determining
motion vectors describing the transformation from a 2D image to another, usually
from adjacent frames in a video sequence. Frame alignment consists in using the
estimated motion vectors to warp the source frame to the target one, transforming
the former into the viewpoint of the latter.
All the video restoration approaches can be divided into two classes based on how
they perform these operations, which can be explicitly or implicitly done by the
network. In this section, for simplicity reasons, the methods performing implicit
motion estimation and alignment will be simply called “implicit” approaches, while
the others “explicit” approaches.
On the one hand, explicit methods have a specific step in their framework whose
purpose is to compute pixel motion and use these motion vectors to perform frame
alignment, allowing to extract spatially precise information from multiple frames.
However, when the estimated pixel motion is wrong, they may introduce visible
artifacts. On the other hand, implicit methods do not have any explicit step to
estimate pixel motion and perform frame alignment, which are implicitly computed
by the network during the restoration process. Such methods do not suffer from
the aforementioned problem, but they may produce worse results than explicit
methods when the estimated pixel motion is correct.
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Table 4.1 reports the methods used by the analyzed approaches for pixel motion
estimation and frame alignment.

Table 4.1: Methods used by the state-of-the-art approaches to estimate pixel motion
and perform frame alignment

Approach name Task(s) Implicit/Explicit Motion
estimation

Frame
alignment

TOFlow [14]

Super resolution,
Denoising,

Frame interpolation,
Compression artifact removal

Explicit SpyNet [15] Spatial transformer network [16]

DeBlurNet [17] Deblurring Implicit Encoder-decoder network
VESPCN [18] Super resolution Explicit Spatial transformer network [16]
DUF [19] Super resolution Implicit 3D convolutions

DVDNet [21] Denoising Explicit DeepFlow [22]
ViDeNN [23] Denoising Implicit Residual network [6]

EDVR [24]

Super resolution,
Denoising,
Deblurring,

Compression artifact removal

Implicit Deformable convolutions [26]

FastDVDNet [28] Denoising Implicit Encoder-decoder network
STDF [29] Compression artifact removal Implicit Deformable convolutions [26]

MFQE 2.0 [30] Compression artifact removal Explicit Spatial transformer network [16]

EVRNet [34]
Super resolution,

Denoising,
Compression artifact removal

Implicit Encoder-decoder network

The vast majority of the analyzed approaches implicitly estimate pixel motion
and perform frame alignment. Regarding the explicit approaches, TOFlow [14]
and DVDNet [21] use an external network specifically designed for this task.
More in detail, TOFlow [14] uses SpyNet [15] to perform motion estimation
whereas DVDNet [21] relies on DeepFlow [22] both for motion estimation and
frame alignment. However, these networks are not designed to estimate pixel motion
in the case of degraded videos, thus they may fail the estimation process when the
artifacts are severe. Other approaches, that is, MFQE 2.0 [30] and VESPCN [18]
use spatial transformer networks [16], which have shown good performance for this
task and, importantly, they can be end-to-end trained with the entire framework.
Concerning the implicit approaches, many different methods are used. DeBlurNet
[17], FastDVDNet [28] and EVRNet [34] perform motion estimation and frame
alignment by means of encoder-decoder networks, EDVR [24] and STDF [29] rely
on deformable convolutions [26], DUF [19] exploits 3D convolutions and ViDeNN
uses a residual network.
It is possible to conclude that there is no relationship between the motion estimation
and compensation methods used by the approaches and the considered restoration
task. In addition, most of the approaches adopt an implicit technique.

4.1.2 Blind methods and non-blind methods
The second analysis concerns how the studied methods deal with the problem that
artifacts affecting video sequences can be of different intensities. For instance, a

38



CHAPTER 4. METHODOLOGICAL APPROACH FOR VIDEO
RESTORATION

video sequence can be much more noisy than another one.
All the image and video restoration approaches can be divided into blind and
non-blind methods based on whether they use information about degradation
operators or not. On the one hand, non-blind approaches are able to achieve better
restoration performance because they can exploit degradation operator information
to better understand how to properly remove the artifacts, but they may produce
new ones when wrong information is used, as stated by Nah et al. [13]. On the other
hand, blind approaches do not have to deal with this problem, but their restoration
performance is usually lower than the one achieved by non-blind methods when the
degradation operator information they use is correct, as An et al. [52] remarked.
There is an open debate on which of the two methods is better.
Using degradation operator information implicitly means that such information is
available, but this is not always the case. For example, at training time the σ value
of the additive white Gaussian noise may be known because the training samples
are synthetically generated. However, such value is unknown when denoising a
video sequence at inference time. In this case, non-blind methods cannot be used
unless the information they require is estimated by means of external resources.
In the literature, several methods to estimate the parameters of different distortions
have been proposed. For instance, Immerkær [53] proposed a simple method to
estimate the variance of zero-mean additive white Gaussian noise affecting images,
whereas Cogranne [54] proposed an algorithm to estimate the quality factor q of
JPEG compressed images based on quantization tables.
Among all the analyzed approaches for video restoration, the only non-blind meth-
ods are DVDNet [21] and FastDVDNet [28], as they take advantage of information
about the standard deviation of the additive white Gaussian noise affecting the
video sequences. In their works, Tassano et al. [21][28] stated that using such
information allowed to increase the denoising performance of their networks. Con-
versely, the other methods do not exploit any information about the intensity of
the artifacts.
It is worth noting that some of these methods do not handle different distortion
intensities with a single model, meaning that they can restore videos affected by
a specific distortion with a specific parameter. For example, MFQE 2.0 [30] and
STDF [29] restore videos compressed using the HEVC algorithm with a specific
value of the quantization parameter, and restoring a video compressed using a
different quantization parameter requires a new model to be trained. Besides,
VESPCN [18] and DUF [19] are able to increase the spatial dimension of videos
using a specific upscaling factor, requiring different models for different upscaling
factors.
In conclusion, it emerged that video restoration frameworks can exploit information
about the intensity of the artifacts affecting video sequences to improve restoration
performance. If such information is not available, external resources can be adopted
to estimate it, but they must be accurate because using wrong information causes
the introduction of new artifacts. In addition, some of the analyzed methods do
not deal with different distortion intensities using a single model, but they require
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new models to be trained. However, the vast majority of them are able to restore
videos even if the artifacts are of different intensities, using a single model properly
trained.

4.1.3 Basic components
The third analysis is related to the basic components of the architectures proposed
in the literature. Such basic components include architectural details, what infor-
mation is used to increase restoration performance, how to perform downscaling
and upscaling operations and so on.
From the analysis carried out, the basic components and key ideas behind the
architectures under study are the following:

• residual learning: after the introduction of the ResNet architecture [6],
residual learning has been widely used in order to ease the training process.
It has been shown that learning the transformation that applied to the input
produces the output is easier than directly learning the output from the
input. Almost all the approaches under study use residual learning, mainly
to preserve spatial details and to speed up the training process.

• downscaling and upscaling strategies: there are different ways to perform
downscaling and upscaling. The simplest solution is to use traditional inter-
polation methods, such as bilinear or bicubic. As stated by Shi et al. [9], using
such traditional methods to perform upscaling does not carry any additional
information to solve the upscaling problem. For this reason, different learn-
able upscaling methods have been introduced, such as upconvolutions and
the sub-pixel convolutional layer [9]. Concerning the downscaling procedure,
some methods still use bilinear interpolation, such as EDVR [24], while others
adopt strided convolutions, such as DeBlurNet [17] and FastDVDNet [28]. It
may be useful to notice that none of them uses max pooling layers, as they
are known to lose information [45].

• encoder-decoder architecture: most of the state-of-the-art approaches use
an encoder-decoder architecture, in which the encoder extracts significant
information from the input by progressively reducing its spatial dimension,
while the decoder uses the information extracted by the encoder to construct
the output by progressively increasing the spatial dimension of the feature
maps. Encoder-decoder networks are widely used in many computer vision
tasks, and the most famous architecture is U-Net [55], which was introduced
for image segmentation. The video restoration frameworks that use an
encoder-decoder architecture are DeBlurNet [17], FastDVDNet [28], STDF
[29] and EVRNet [34].

• single-scale architecture: on the one hand, using encoder-decoder architec-
tures allows to learn semantically rich features, but, on the other hand, the
downscaling process in such architectures loses fine spatial details, which

40



CHAPTER 4. METHODOLOGICAL APPROACH FOR VIDEO
RESTORATION

are difficult to recover in later stages [56]. For this reason, some methods
work in the full-resolution domain to produce results with more accurate
spatial details. For instance, ViDeNN [23] and MFQE 2.0 [30] use single-scale
architectures. However, the main problem is related to the computational
cost, as working in the full-resolution domain requires a higher number of
operations than the ones required when working at lower resolution.

• end-to-end training: end-to-end learning usually refers to omitting any hand-
crafted intermediary algorithms and directly learning the solution of a given
problem. In some cases, end-to-end training a neural network has been shown
to increase performance. Among the studied video restoration approaches,
some of them use specific blocks to perform specific operations. For example,
both DVDNet [21] and ViDeNN [23] use spatial and temporal denoisers that
are trained sequentially: the output of the spatial denoiser is used to train
the temporal denoiser. Tassano et al. [28] stated that, specifically for video
denoising, end-to-end training allows to reduce flickering artifacts.

• preprocessing module: when frames are affected by severe distortions, es-
timating pixel motion becomes a very difficult task. For this reason, some
approaches use preprocessing modules in order to improve the quality of the
frames before the motion estimation step. For instance, DVDNet [21] and
ViDeNN [23] use a specific module for single frame denoising, whereas EDVR
[24] uses a pre-deblur module to improve alignment accuracy.

• degradation information exploitation: as already mentioned in Chapter 2,
degradation operators are characterized by some parameters. Image and
video restoration approaches can be divided into blind and non-blind methods
based on whether they use information about degradation operators or not,
as remarked in Subsection 4.1.2. DVDNet [21] and FastDVDNet [28] are
non-blind methods exploiting information about the intensity of the additive
white Gaussian noise (represented by its standard deviation) affecting the
video sequences to improve the denoising performance.

• two-stage restoration: two-stage restoration means that the output of the
first model is used as input to the same model in a recursive way. Another
possibility is to cascade two different models of the same network, so that
the output of the first model is used as input to the second one. This is
done by FastDVDNet [28], in which the outputs of the first set of denoising
blocks are fed to another denoising block. Tassano et al. [28], in their work,
studied the impact of the two-stage denoising, confirming that the denoising
performance using this strategy increases. This is also confirmed by Wang et
al. [24], who showed that feeding the output of the first EDVR [24] model to
another EDVR [24] model allows to obtain better restoration performance in
all the addressed tasks.

• residual and dense blocks: some architectures among the analyzed ones are
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inspired by ResNet [6] and DenseNet [57] and use the original or modified
blocks taken from the aforementioned networks. Using such blocks allows
to mitigate the vanishing gradient problem, to encourage feature reuse and
strengthen feature propagation [30]. DeepDeblur [13], DVDNet [21] and
EDVR [24] use a cascade of residual blocks [6], whereas DUF [19] and MFQE
2.0 [30] use dense blocks [57].

• temporal and spatial attention: the attention mechanism [27] is used to
weight feature maps according to their importance, because not all the
features extracted contribute equally to the construction of the restored
frame. There are different ways to implement this mechanism. For example,
the Squeeze-Excitation block [47] allows to perform inter-channel attention,
while the non-local operation [46] is used for spatial attention. EVRNet
[34] uses Squeeze-Excitation blocks [47], while EDVR [24] makes use of a
specifically designed module, called TSA and described in Subsection 3.2.7,
to perform both temporal and spatial attention.

• temporal neighborhood exploitation: temporal information is a key concept
for all the video restoration tasks. In order to exploit temporal information,
the target frame is fed to the network together with a number of adjacent
frames. The dimension of the temporal neighborhood changes based on the
architecture. For instance, ViDeNN [23] uses just three frames as input,
TOFlow [14] and EDVR [24] use seven frames, while MFQE 2.0 [30] uses the
entire video sequence. Although using more frames is expected to produce
better results, some studies demonstrated that using too many frames may
cause a drop in performance, especially in the case of large motion.

Some considerations can be made about the aforementioned basic components.
First, there are no specific modules to perform specific restoration tasks. This is
particularly important because it means that an approach designed to address a
task may be used to address another task. Second, encoder-decoder architectures
are the most used architectures, as they can extract semantically rich features,
but their main drawback is that of losing high-frequency components during the
downscaling process. On the contrary, using single-scale architectures that do
not reduce the spatial dimension allows to preserve spatial details, but they learn
less powerful features. Therefore, it may be possible to fuse such architectures to
exploit their best characteristics [56]. Third, there is no correct answer regarding
the optimal number of adjacent frames to use to produce the best restoration
performance, as it depends on the cases and it is based on empirical evaluations.
Finally, using distortion information may help networks increase the restoration
performance. These considerations should be taken into account to design a new
video restoration framework.
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4.1.4 Loss functions
The last analysis concerns the loss functions used by the video restoration ap-
proaches to understand whether there is any relationship between the used loss
function and the addressed task.

Table 4.2: Loss functions used for the training process of the state-of-the-art
approaches

Approach name Task(s) Loss function

TOFlow [14]

Super resolution,
Denoising,

Frame interpolation,
Compression artifact removal

L1

DeBlurNet [17] Deblurring MSE
VESPCN [18] Super resolution MSE + Huber [50]
DUF [19] Super resolution Huber [50]

DVDNet [21] Denoising MSE
ViDeNN [23] Denoising SSE

EDVR [24]

Super resolution,
Denoising,
Deblurring,

Compression artifact removal

Charbonnier [58]

FastDVDNet [28] Denoising MSE
STDF [29] Compression artifact removal SSE

MFQE 2.0 [30] Compression artifact removal MSE

EVRNet [34]
Super resolution,

Denoising,
Compression artifact removal

L1

Table 4.2 reports the loss functions used by the analyzed methods. As shown, most
of the approaches use MSE as loss function to deal with all the restoration tasks,
except for temporal frame interpolation. L1 loss is used only by TOFlow [14] and
EVRNet [34], while ViDeNN [23] and STDF [29] use SSE instead of MSE.
From this quick analysis it is possible to conclude that the most used loss function
is MSE and there is no relationship between a specific loss function and a specific
restoration task.

4.2 Selection of the baseline architecture
Although some of the video restoration approaches described in Chapter 3 are able
to achieve very good performance in different tasks, the vast majority of them
deal with single artifacts. For example, EVRNet [34] achieves good performance
in video denoising, super resolution as well as in compression artifact removal.
However, the network addresses just a single artifact at a time, and it is not able
to restore videos affected by multiple distortions simultaneously. EDVR [24] is
effective in restoring multi-distorted videos, but it is not efficient because of its 20
million parameters.
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Since the purpose of this thesis is that of creating a deep neural network to restore
videos in the presence of multiple artifacts, two routes can be adopted: starting from
scratch in developing a new method or extending an existing approach. As starting
from scratch is not a good idea for several reasons, such as the limited amount of
time available, choosing an existing and promising approach and extending it is
the best solution.

Table 4.3: High-level analysis of the state-of-the-art approaches for video restoration
used to select the baseline model to take inspiration from

Approach name Publication
year Task(s)

Motion
estimation/

compensation

Source
code

Train
code Language

TOFlow [14] 2017

Super resolution,
Denoising,

Frame interpolation,
Compression artifact removal

Explicit 3 3 Matlab, Python

DeBlurNet [17] 2017 Deblurring Implicit 3 7 Lua, Matlab
VESPCN [18] 2018 Super resolution Explicit 3 3 Python, Shell
DUF [19] 2018 Super resolution Implicit 3 7 Python

DVDNet [21] 2019 Denoising Explicit 3 7 Python, Shell
ViDeNN [23] 2019 Denoising Implicit 3 3 Python, Shell

EDVR [24] 2019

Super resolution,
Denoising,
Deblurring,

Compression artifact removal

Implicit 3 3
Python, C++,
Cuda, Matlab

FastDVDNet [28] 2020 Denoising Implicit 3 3 Python, Shell

STDF [29] 2020 Compression artifact removal Implicit 3 3
Python, C++,
Cuda, Shell

MFQE 2.0 [30] 2020 Compression artifact removal Explicit 3 3 Python

EVRNet [34] 2020
Super resolution,

Denoising,
Compression artifact removal

Implicit 7 7 -

There are some critical aspects that must be taken into account in order to
decide which of the analyzed approaches should be used as baseline model to take
inspiration from. The availability of the source code and the training code is an
essential aspect, as some works accurately describe the proposed approach without
providing the code to run it. All the analyzed methods are provided with the
source code, except for EVRNet [34]. Unfortunately, DeBlurNet [17], DUF [19]
and DVDNet [21] are not provided with the train code, therefore they cannot
be extended to different tasks because it is not possible to train new models.
Another critical aspect is the method used to estimate pixel motion and perform
frame alignment, as it may affect the restoration performance. The advantages
and disadvantages of these approaches have already been discussed in Subsection
4.1.1. Based on those observations, using methods that perform implicit pixel
motion estimation and frame alignment appears the most suitable solution because
explicitly estimating pixel motion in the case of multi-distorted videos could be very
challenging and, thus, motion estimation errors may be propagated throughout
the entire network producing additional artifacts. TOFlow [14], VESPCN [18],
DVDNet [21] and MFQE 2.0 [30] explicitly estimate pixel motion and perform frame
alignment, while DeBlurNet [17], DUF [19], ViDeNN [23], EDVR [24], FastDVDNet
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[28], STDF [29] and EVRNet [34] do them implicitly.
All the results of this analysis are summarized in Table 4.3. Based on these
considerations, the methods whose code is not available or use an explicit motion
estimation and compensation steps have been discarded. The implementation of
the remaining methods has been analyzed more in detail, starting from the most
recent one.
The first method analyzed was STDF [29], a state-of-the-art approach to remove
compression artifacts from videos proposed by Deng et al. in 2020. Implemented
in Python using Pytorch [59], it uses implicit motion estimation and compensation
and it is end-to-end trainable. Unfortunately, the code of STDF [29] does not work
“as-is” even after having allocated three hours for environment setup due to its
external dependencies and, hence, it has been discarded.
The second method analyzed was FastDVDNet [28], a state-of-the-art approach
for video denoising proposed by Tassano et al. in 2020, implemented in Python
using Pytorch [59]. The source code is available, well documented and it is easy to
read and understand. In addition, also the code for training models is available.
Motion estimation and compensation are implicitly performed by the network and
learned during the training process. The network is end-to-end trainable and is
very efficient, achieving real-time video denoising performance. Finally, the source
code provided by the authors works without any further intervention, allowing
both to train a new model and to test pre-trained models.
For these reasons, in addition to other interesting characteristics of the network,
FastDVDNet [28] has been selected as baseline model on which to build a new deep
neural network able to restore videos affected by multiple artifacts.

4.3 FastDVDNet in detail
In order to fully comprehend how FastDVDNet [28] works, a further analysis aiming
to investigate the main characteristics of this network is necessary. In particular,
the most interesting ones are related to the structure of the architecture and the
way it exploits information about distortion parameters to improve the denoising
performance.

4.3.1 Spatio-temporal information
Temporal coherence and flickering removal are fundamental aspects for each video
denoiser. In order to achieve these, any video denoiser should use temporal
information existing in neighboring frames.
The architecture of FastDVDNet [28] has been designed to be able to extract both
spatial and temporal information from the target frame and its neighboring frames.
Using spatial and temporal information means that, when denoising a given pixel,
the network can look for similar pixels not only in the target frame but also in
adjacent ones. For this reason, it is important to provide the network also with
adjacent frames in order to fully exploit temporal redundancy, which is useful to
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extract meaningful features to effectively remove noise from videos. To this end,
FastDVDNet [28] takes five consecutive frames as input, considering the central
frame as the target. Given the target frame at time t, ft, its four neighboring
frames are stacked and fed to the network, that is, the input of the network is
{ft−2, ft−1, ft, ft+1, ft+2}.

4.3.2 Motion handling
As already mentioned in Section 4.2, one of the main reasons why FastDVDNet
[28] has been selected among other approaches is its ability to implicitly handle
pixel motion between frames.
Especially for video denoising, explicitly handling motion adds an additional
complexity, as pixel values are not constant over time. This makes it very difficult
to estimate how pixels have moved when dealing with severe noisy frames. Wrong
motion estimation, which is usually performed at the beginning of every video
restoration framework, implies wrong alignment, i.e. the neighboring frames are
not correctly warped to the target one, leading to visible artifacts because the
extracted information are not spatially precise. This is why FastDVDNet [28] does
not include any specific module for motion estimation and frame alignment, which
are implicitly embedded within the network itself, thus avoiding the problem of
introducing new artifacts because of wrong motion estimations.

4.3.3 Noise map
An important characteristic of all the state-of-the-art approaches to both image
and video restoration is that of being either blind or non-blind methods. Blind
methods perform restoration without any information about the distortion affecting
the image or the video, while non-blind methods require some information about
the distortion to obtain optimal restoration results. In the latter case, there are
different ways to provide the network with degradation operator information. For
example, An et al. [52], in their work related to single image deblurring, estimate
the blur kernel, encode it and feed it to the network alongside the blurred image.
FastDVDNet [28] performs non-blind video denoising, as it requires additional
information about the noise intensity. In addition to a noisy video sequence, it takes
a noise map as input, which is nothing but an additional channel that, concatenated
to the noisy frames, is fed to the network to provide useful information that the
network can exploit to understand the severity of the distortion and consequently
remove it. In this case, since the considered noise is uniform zero-mean additive
white Gaussian noise, the noise map is filled with the value of the standard deviation
of the noise affecting the video sequence.
Tassano et al. [28] also stated that such noise map could be very useful in the case
of spatially variant noise. However, in their work, they trained FastDVDNet [28]
only using uniform noise and they did not provide any experimental result about
spatially variant noise.
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It is worthwhile to mention that such noise map is also used at inference time.
However, at inference time, the actual standard deviation of the noise corrupting
the video sequence is usually unknown. For this reason, the network as delivered
by its authors cannot be used in real cases unless an additional method to estimate
the standard deviation of the noise affecting the video sequence is devised.

4.3.4 Denoising block
The main component of FastDVDNet [28] is the denoising block, which is a modified
U-Net [55] architecture. U-Net [55] is an encoder-decoder architecture with skip
connections that forward the output of each encoder layer directly to the input of
the corresponding decoder layer.
In contrast to the original U-Net [55] architecture, Tassano et al. [28] modified the
denoising block as follows:

• the encoder is adapted to take three adjacent frames and the noise map as
input;

• the upscaling in the decoder is performed using Pixel Shuffle layers [9], which
are used to reduce gridding artifacts;

• skip connections apply pixel-wise addition instead of channel-wise concatena-
tion, reducing memory requirements;

• residual learning [6] is applied by subtracting the output of the block from
the input central frame, making the training process easier.

Figure 3.17 in Subsection 3.2.8 illustrates the architecture of the denoising block.
More in detail, three consecutive frames and the noise map are stacked and given to
the denoising block as input. The encoder is composed of eight convolutional layers,
which are followed by batch normalization [8] and ReLU [60]. The downscaling
operation is performed using strided convolutions, and the channel depth varies from
32 up to 256. The encoder halves the spatial dimension of the input frames twice
so that, at the bottleneck, the spatial dimension of the feature maps corresponds
to a quarter of the original spatial dimension. The decoder is composed of eight
convolutional layers as well, but the channel depth varies from 256 down to 3,
corresponding to the channels of the restored frame in the RGB domain. As already
mentioned, upscaling is performed using Pixel Shuffle layers [9] in order to reduce
gridding artifacts. Finally, residual learning [6] is applied by subtracting the output
of the decoder from the central noisy input frame.

4.3.5 Two-stage denoising
FastDVDNet [28] is a two-step cascaded architecture. As shown in Figure 3.16, the
first stage consists of three parallel denoising blocks, whose weights are shared, while
the second stage is performed by an additional denoising block. Each denoising

47



CHAPTER 4. METHODOLOGICAL APPROACH FOR VIDEO
RESTORATION

block in the first stage takes three neighboring frames, along with the noise map,
as input and tries to recover the central frame. Then, the outputs of the blocks of
the first stage are stacked and, along with the noise map, are fed to the denoising
block of the second stage to produce the final result.
The decision of such architecture is motivated by the fact that, in this way, the
network can effectively employ information from the temporal neighbors and enforce
the temporal correlation of the remaining noise in the output frame.
Tassano et al. [28] provided a demonstration that two-stage denoising outperforms
single-stage denoising. They compared the two-step cascaded architecture of
FastDVDNet [28] with a single-step architecture using more frames as input,
concluding that the former is able to obtain better performance because the latter
showed a sharp increase of flickering artifacts.

4.3.6 Training details
The training process of FastDVDNet [28] is supervised, therefore, it needs pairs of
input-output frames.
The network has been trained using 384000 patches randomly extracted from the
DAVIS 2017 dataset [61], to which additive white Gaussian noise with variable
σ is added. More in detail, given a set of five consecutive frames, five patches
of size 96 × 96 are randomly cropped at the same spatial location, one for each
frame. Then, additive white Gaussian noise with random σ ∈ [5, 55] is added to
the cropped patches. The ground truth is given by the patch cropped from the
central frame (the third frame, in this case) without any noise applied. The noise
map is a single channel of size 96× 96 filled with the value of the used σ. The five
96× 96 patches along with the noise map compose a training sample. Note that
using patches of size 96× 96 is sufficient to provide enough overlapping contents
in the stack even if the frames are not aligned. Data augmentation is performed
using random horizontal and vertical flips.
MSE is used as loss function between the input frame and the corresponding ground
truth using Adam [62] as optimizer. The training process proceeds for 80 epochs
using mini-batches of size 96. Regarding the learning rate, the initial learning rate
is set to 1e−3 for the first 50 epochs, then changes to 1e−4 for the following 10
epochs and then changes again to 1e−6 for the remaining epochs.

4.3.7 Inference
In order to use FastDVDNet [28] to remove noise from videos, each frame must be
surrounded by other four frames representing its temporal neighborhood. One may
think which neighboring frames can be used, for example, for the first frame of the
video sequence, as it does not have any previous frame. A possible solution may
be that of using its consecutive frames (referring to the previous example, from
the second frame to the fifth one). However, the network is trained just to recover
the central frame, so the aforementioned solution is not feasible. For this reason, if
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the natural temporal neighborhood is not available, some previous and subsequent
frames are used to wrap the target one so that it is placed in the central position.
For instance, given a five-frame video sequence, the frames are concatenated as
follows:

• to restore the first frame, f1: [f3, f2, f1, f2, f3]

• to restore the second frame, f2: [f2, f1, f2, f3, f4]

• to restore the third frame, f3: [f1, f2, f3, f4, f5]

• to restore the fourth frame, f4: [f2, f3, f4, f5, f4]

• to restore the fifth frame, f5: [f3, f4, f5, f4, f3]

In this way, the target frame is always placed in the center position, and the
information coming from its temporal neighborhood can be used to restore it.

4.4 Proposed method for video restoration:
MdVRNet

In order to accomplish this thesis goal, that is, designing a deep neural network
to restore videos affected by multiple distortions, the denoising capability of
FastDVDNet [28] and its potential flexibility to be adapted to other restoration
tasks have been exploited and further improved by using the insights identified from
the in-depth analysis carried out in Section 4.1. The result is a new multi-distorted
video restoration network able to restore videos even when they are corrupted
by multiple degradation operators. This network is called Multi-distorted Video
Restoration Network, abbreviated MdVRNet.

4.4.1 Architecture overview
The MdVRNet framework takes inspiration from the analyzed FastDVDNet [28],
which is a two-step cascaded architecture taking five consecutive frames as input
and using a noise map to obtain additional information about the noise intensity
to increase the denoising performance.
MdVRNet exploits an original distortion parameter estimation module properly
devised to obtain information about degradation operators affecting video sequences
and make the restoration process more robust, and a novel multi-scale restoration
block similar to the denoising block of FastDVDNet [28] but with the following
improvements: the additional full-resolution feature branch, used to extract features
at full resolution in order to learn fine pixel dependencies and avoid losing details,
and the channel attention mechanism used to weight the features extracted by the
low-resolution and the full-resolution feature branches, according to the importance
they have in reconstructing the target frame.
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Figure 4.1: MdVRNet architecture proposed to restore videos affected by multiple
distortions

An overview of the framework is shown in Figure 4.1. The target frame is given to
the distortion parameter estimation module to estimate the degradation parameters
required by MdVRNet, and the extracted information is propagated to each multi-
scale restoration block to make them aware about the intensity of the artifacts
affecting the video sequence, increasing the restoration performance. Each group of
three consecutive frames is fed to the corresponding multi-scale restoration block
composing the first restoration stage, which contains three blocks in total. The
outputs of the first restoration stage are used as inputs to the second restoration
stage, which consists of just a single multi-scale restoration block. The output
of the second restoration stage corresponds to the restored frame. Overall, the
MdVRNet framework contains about 3 million parameters.
In summary, the basic components of MdVRNet are the following:

• noise map estimation

• multi-scale restoration block

• two-stage restoration

• implicit motion estimation and frame alignment

4.4.2 Noise map estimation
As mentioned in Subsection 4.3.3, in the original version of FastDVDNet [28]
proposed by Tassano et al. [28] the noise map must be filled with the true value of
the σ parameter of the additive white Gaussian noise affecting the video sequence.
However, such value may be unknown at inference time and an additional resource
to estimate it is needed.
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It is important to notice that MdVRNet is designed to restore multi-distorted
videos, therefore, such additional resource must be able to extract information
related to multiple distortions. Different methods to estimate the distortion pa-
rameters of different degradation operators have been mentioned in Subsection
4.1.2. However, although they can accurately estimate the considered distortion
parameters, they are designed to estimate these parameters only in the presence
of single artifacts and they may produce inaccurate estimations when multiple
distortions are present.
To address this problem, a new CNN called Distortion Parameter Estimation
Network and dubbed DPEN has been devised. DPEN is a feedforward network
consisting of five convolutional blocks and three fully connected blocks, as shown in
Figure 4.2. Concerning the convolutional component of DPEN, each convolutional
block is composed of a convolutional layer followed by ReLU [60], batch normaliza-
tion [8] and max pooling, except for the fourth and the fifth convolutional blocks
in which batch normalization [8] has been removed. The kernel size is set to five
in the first three convolutional layers, to three in the fourth convolutional layer
and to one in the last one. The depth varies from 8 up to 128 and the spatial
dimension is halved by each max pooling layer so that the output shape of the last
convolutional block corresponds to a fifth of the input shape. The downscaling
operation is performed just by max pooling layers, as the convolutional layers use
zero-padding to preserve the spatial dimension. Regarding the fully connected
component, the first fully connected layer has 64 neurons, the second one has 32
neurons and the last one has two neurons, which output the estimated values of the
distortion parameters. Each fully connected layer is followed by ReLU [60] except
for the last one, which uses Sigmoid to compress the output value in the [0, 1]
range. Finally, the convolutional and fully connected components of DPEN are
connected by means of a global average pooling layer, so that there is no constraint
about the shape of the input images.
It is important to notice that DPEN outputs global values because it is devised
under the assumption of globally distributed artifacts, that is, the artifact intensity
is constant in all the spatial positions of a given frame.
In the case of video denoising, the additive white Gaussian noise is characterized
by two parameters: the mean and the standard deviation. Since the mean is always
considered as zero, the only parameter to estimate is the value of the standard
deviation. Also in the case of video deblurring, Gaussian kernels are characterized
by two parameters: the dimension of the kernel and the standard deviation. Since
the kernel size depends on the standard deviation, only this latter parameter needs
to be estimated. In the case of JPEG compression, the parameter to estimate
is the value of the quality factor q. Estimating such parameters is equivalent to
estimating the intensity of the artifacts, as there is a correlation between them:
the higher the value of σ, the higher the intensity of noise or blur; the lower the
value of q, the higher the intensity of the blocking artifacts. For these reasons, the
network outputs two values depending on the artifacts it has to deal with.
One may notice that DPEN takes one frame as input instead of a frame sequence.
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Figure 4.2: Architecture of the neural network devised to estimate distortion
parameters, named DPEN

This because it is assumed that all the frames of a video sequence contain the same
distortion intensity, thus using a frame sequence instead of a single frame would
not bring additional information.
DPEN is a very shallow network, as it has just about 53K parameters. Therefore,
it can be used to estimate the distortion parameters required by MdVRNet intro-
ducing very little overhead.
Since only combinations of two distortions have been considered in this thesis, as
mentioned in Section 2.4, the noise map used by MdVRNet contains two channels,
so that the first one can be filled with the value of the first distortion parameter,
such as the σ value of additive white Gaussian noise, whereas the second one can
be filled with the second distortion parameter, i.e. the quality factor q used to
compress frames.

4.4.3 Multi-scale restoration block
The effectiveness of MdVRNet in restoring multi-distorted videos lies on the multi-
scale restoration block, which is a two-stream network that allows to extract spatial
and temporal features at different scales, weight them according to their importance
using an attention mechanism and fuse them to obtain a degradation map that is
finally removed from the degraded target frame.
The detailed representation of the multi-scale restoration block is shown in Figure
4.3. A stack of three consecutive frames along with the noise map estimated by
DPEN are used as input. After a set of two convolutions, each of which followed by
batch normalization [8] and ReLU [60], the computation is broken into two parallel
branches working at different resolutions.
The first branch works at full resolution in order to extract fine pixel dependencies,
capturing spatially accurate details. This branch is important to restore the
target frame without losing high-frequency components, such as edges. The first
convolutional layer is used to increase the number of feature maps from 32 to 64.
Then, a set of three residual blocks are applied in order to learn the degradation map
at full resolution, paying more attention to finer details. The residual block used by
MdVRNet is very similar to the residual block used by DeepDeblur [13]. Finally, the
number of feature maps are reduced from 64 back to 32 using a final convolutional

52



CHAPTER 4. METHODOLOGICAL APPROACH FOR VIDEO
RESTORATION

layer. The full-resolution branch contains a total of 8 convolutional layers, which
are able to extract useful information without increasing the computational cost
too much.

Figure 4.3: Multi-scale restoration block used by MdVRNet to restore multi-
distorted videos

The second branch allows to extract coarse pixel dependencies in local areas to
obtain semantically rich features using an encoder-decoder architecture working at
low resolution. Downsampling is performed using strided convolutions, each one
halving the spatial dimension. There are a total of two downscaling operations so
that, at the bottleneck, the spatial dimension corresponds to a quarter of the input
spatial dimension. As the input passes through this branch, a set of convolutional
layers, batch normalization [8] and ReLU [60] decreases the spatial resolution while
increasing the number of feature maps. Skip connections forward the output of
each encoder layer directly to the input of the corresponding decoder layer using
pixel-wise addition to ease and speed up the training process. Upsampling is
performed using Pixel Shuffle layers [9] to reduce gridding artifacts.
The features extracted by the two branches are then concatenated and passed
through a Squeeze-Excitation block [47], which performs channel attention to
weight each feature map according to its importance in reconstructing the target
frame. The detailed representation of the Squeeze-Excitation block [47] is shown
in Figure 4.4.
The weighted feature maps are then fused together using a final set of convolutional
layers, batch normalization [8] and ReLU [60] to obtain the degradation map, which
is finally subtracted from the degraded target frame to remove the artifacts and
consequently restore it. It is worthwhile to point out that the degradation map is
composed of three channels, each of which contains the artifacts detected by the
network within each RGB channel of the degraded target frame.
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Figure 4.4: Squeeze-Excitation block [47] used by MdVRNet to weight the features
extracted by the two branches of the multi-scale restoration block

4.4.4 Two-stage restoration
In their work, Tassano et al. [28] have shown that a two-stage network outperforms
a single-stage network in removing noise from videos. This is why FastDVDNet
[28] is a two-step cascaded architecture. This characteristic is also inherited by
MdVRNet.
The restoration process is split into two stages: the first stage aims to provide
intermediate results that will be used by the second stage to produce the final
result. The first restoration stage is composed of three multi-scale restoration
blocks placed in parallel. Each block takes a stack of three consecutive frames,
together with the noise map estimated by DPEN, as input. Note that the weights
of the three multi-scale restoration blocks of the first stage are shared, that is, all
the blocks perform the same identical operations. The second restoration stage is
composed of just a single multi-scale restoration block, which takes the outputs of
the first stage and the noise map estimated by DPEN as input.
Ideally, the first restoration stage should pay more attention to single pixel restora-
tion using information coming from very close neighboring pixels both in the same
frame and in the closest frames, that is, the previous and the subsequent one. This
because the multi-scale restoration blocks within the first stage use short-term
information and do not have access to long-term information, as each of them sees
just a limited temporal neighborhood, i.e. only the previous and the subsequent
frame of the given frame. Instead, the second restoration stage should pay more
attention to restoring local areas, since the multi-scale restoration block of this
stage has access to long-term information and it has a more complete vision of
the scene. This because it takes the three output frames of the first restoration
stage as input that, in turn, contain information extracted from all the five frames
corresponding to the input of MdVRNet.
In order to support the aforementioned statements, Figure 4.5 shows an example
of a degraded video frame, obtained by initially adding noise and then compressing
it using the JPEG algorithm, restored by MdVRNet. The figure also shows the
degradation map and the intermediate result produced by the first restoration
stage, as well as the degradation map produced by the second restoration stage.
More in detail, Figure 4.5(b) shows the degradation map produced by the first
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(a) Degraded frame (b) Degradation map produced by the first
restoration stage

(c) Intermediate result produced by the first
restoration stage obtained from (a) - (b)

(d) Degradation map produced by the second
restoration stage

(e) Restored frame obtained from (c) - (d)

Figure 4.5: Example of frames and degradation maps extracted from the restoration
process of MdVRNet, showing the artifacts removed by each restoration stage. The
color of the degradation maps has been modified for a better interpretation.

restoration stage, which subtracted from the degraded frame in Figure 4.5(a) allows
to obtain the intermediate result shown in Figure 4.5(c). As shown, the degradation
map in Figure 4.5(b) contains fine artifacts at pixel level, which seem to correspond
to noise. Figure 4.6 reports the degradation map produced by the first restoration
stage divided into channels, allowing to better see its content. Moving forward in
the restoration process, the second restoration stage produces the degraded map
illustrated in Figure 4.5(d), whose artifacts are clearly different from the ones in
Figure 4.5(b). Indeed, they seem coarser artifacts related to JPEG, which acts on
local areas of size 8× 8 rather than single pixels. Interestingly, the artifacts on the
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(a) First channel (b) Second channel

(c) Third channel

Figure 4.6: Channels of the degradation map reported in Figure 4.5(b)

(a) First channel (b) Second channel

(c) Third channel

Figure 4.7: Channels of the degradation map reported in Figure 4.5(d)

wings of the plane are very mild, meaning that they have been almost completely
removed by the first restoration stage. Since the wings are uniform areas, the
network treats the entire region in the same way. Figure 4.7 reports the degradation
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map produced by the second restoration stage decomposed into channels, in which
the JPEG related artifacts are more evident. Finally, the artifacts affecting the
intermediate result are removed by subtracting the degradation map of the second
restoration stage in Figure 4.5(d), producing the restored frame shown in Figure
4.5(e).

4.4.5 Implicit motion estimation and alignment
Pixel motion estimation and frame alignment are tasks that all the video restoration
approaches should fulfill to effectively exploit spatial and temporal information
coming from both the target frame and its adjacent ones in order to avoid flickering.
As already discussed in Subsection 4.1.1, pixel motion estimation is a difficult
task even when videos are of high quality, and it becomes more difficult when
videos contain some kind of artifacts. Furthermore, when multiple artifacts are
present in a video sequence, the correlation among the values of the same pixel
in adjacent frames may be broken, making the motion estimation process even
more challenging. This is the reason why explicitly estimating pixel motion is not
suitable when videos are corrupted by multiple distortions.
It is important to point out that, given five consecutive frames as input, pixel motion
estimation and frame alignment between the target frame and its neighboring frames
are not computed in a single step. This because, in the case of large motion, it
may be difficult to align the target frame and a frame that is not its immediate
neighbor, that is, it is neither the previous nor the subsequent frame. This is why
there are three multi-scale restoration blocks within the first restoration stage,
each of which takes just three consecutive frames as input instead of the entire
temporal neighborhood of the target frame. In this way, each multi-scale restoration
block can focus on searching for similar pixels in a smaller neighborhood, better
employing temporal information.
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Chapter 5
Experimental results

This chapter describes the experiments carried out to evaluate the effectiveness
of FastDVDNet [28] in removing both single and multiple artifacts from videos,
the performance of DPEN in predicting the degradation operator parameters and
the restoration performance of the proposed MdVRNet when dealing with multi-
distorted videos, bringing out interesting considerations based on the obtained
results.
More in detail, the dataset and the metrics used to conduct the evaluation and assess
the effectiveness of the networks in restoring distorted videos are introduced in
Section 5.1 and 5.2, respectively, while Section 5.3 reports the training details used
to train all the different models of FastDVDNet [28] and the proposed MdVRNet.
In Section 5.4, the flexibility of FastDVDNet [28] in removing different but single
artifacts from videos is evaluated, while in Section 5.5 the network is assessed on
the task of multi-distorted video restoration, when videos are affected by multiple
distortions at the same time. The experiments in Section 5.6 aim to evaluate the
accuracy of DPEN in predicting degradation operator parameters and its attitude
in being integrated into existing blind methods. Finally, Section 5.7 investigates
the performance of the proposed MdVRNet in restoring videos affected by noise
and compression artifacts, focusing on the contribution its basic components give.

5.1 Dataset
The Densely-Annotated VIdeo Segmentation (DAVIS) 2017 dataset was created by
Pont-Tuset et al. [61] for the 2017 DAVIS challenge on video object segmentation.
It contains 120 video sequences representing both indoor and outdoor scenes. Each
sequence is composed of a variable number of frames, ranging from 25 to 127,
for a total of 10459, and each frame is an RGB image of size 480× 854 in JPEG
format. The dataset is divided into a training set, containing 90 sequences, and
a test set, containing the remaining 30 sequences. All the experiments in this
chapter have been conducted using this dataset, which can be downloaded at
https://davischallenge.org/index.html.
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5.2 Evaluation metrics
In order to evaluate the effectiveness of both FastDVDNet [28] and the proposed
MdVRNet in removing artifacts from videos, a set of objective criteria is needed.
There are several metrics proposed to assess the quality of restoration methods.
Among the available metrics, the results obtained in all the experiments have been
quantitatively assessed in terms of peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) [12].

5.2.1 Peak signal-to-noise ratio
Peak signal-to-noise ratio (PSNR) is one of the main full-reference metrics used
to measure the quality of reconstruction algorithms. It is defined as the ratio
between the maximum possible power of a signal and the power of corrupting noise
that affects the fidelity of its representation. Since many signals have a very wide
dynamic range, PSNR is usually expressed as a logarithmic quantity using the
decibel scale.
PSNR is defined via MSE. When dealing with images, the mean squared error
(MSE) allows to compare the true pixel values of the original image with the ones of
the degraded image. It represents the average of the squares of the errors between
the original image and the noisy image, where the error is the amount by which
the values of the degraded image differ from the original ones. For color images,
MSE is computed over all pixel values of each individual channel and it is averaged
with the number of color channels.
Mathematically, given two images I and K of size n×m, where I is the original
image and K is its noisy approximation, MSE is computed as follows:

MSE(I,K) = 1
n×m

n−1∑
i=0

m−1∑
j=0

(Ii,j −Ki,j)2 (5.1)

Given the MSE between I and K, PSNR is computed as follows:

PSNR(I,K) = 20 · log10
MAXI√

MSE(I,K)
(5.2)

where MAXI is the maximum pixel value of the image I. Since MSE measures
pixel errors and a low value of MSE implies a higher value of PSNR, the higher
the PSNR, the better. Note that, when the compared images are identical, MSE is
0 and PSNR is undefined (division by zero).
Although PSNR is a widely used metric to assess the effectiveness of reconstruction
algorithms, it strictly relies on numeric comparison without taking into account
any perceptual factors of the human vision system.

5.2.2 Structural similarity index
Structural similarity index (SSIM) [12] is another widely used full-reference method
for measuring the similarity between two images. In contrast to PSNR, SSIM [12]
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is a perception-based metric that considers image degradation as perceived change
in structural information, incorporating important perceptual phenomena including
both luminance masking and contrast masking terms. Structural information is the
idea that pixels have strong inter-dependencies, especially when they are spatially
close. These dependencies carry important information about the structure of
the objects in the visual scene. Luminance masking is a phenomenon whereby
image distortions tend to be less visible in bright regions, while contrast masking
is a phenomenon whereby distortions become less visible where there is significant
activity or texture in the image.
Instead of using traditional error summation methods, SSIM [12] models image
distortion as a combination of three factors: luminance distortion, contrast distor-
tion and structural distortion.
Given two images X and Y of the same size, SSIM [12] is computed as follows:

SSIM(X, Y ) = (2µxµy + c1)(2σxy + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2)

(5.3)

where µx and µy are the average pixel values, σ2
x and σ2

y are the pixel variances
and σxy is the pixel covariance of X and Y . Moreover, c1 and c2 are two variables
used to stabilize the division when the denominator is close to zero, computed as
k1L and k2L, respectively. L is the dynamic range of pixel values (usually 255), k1
is equal to 0.01 and k2 is equal to 0.03 by default.
In contrast to PSNR, which takes values in the [0,∞] range, SSIM [12] assumes
values in the [0, 1] range. Also in this case, the higher the SSIM [12], the better.
When the compared images are identical, SSIM [12] is equal to 1.

5.3 Training details
As mentioned in Subsection 4.3.6, Tassano et al. [28] trained their FastDVDNet [28]
for 80 epochs with 384000 training samples each. However, training the network
with this configuration for each experiment would require a huge amount of time.
Therefore, due to the limited time budget, all the following experiments have been
conducted training the models for 8 epochs with 256000 training samples each, and
a mini-batch size set to 32 for a total of 64000 steps. The learning rate has been set
to 1e−3 for the first five epochs, and to 1e−4 for the remaining three. To reduce the
time required to train the models, patches of size 64× 64 have been used. Adam
[62] has been adopted as optimizer and MSE as loss function, according to the
original training setup.
During the experiments it emerged that the used configuration was enough to
converge, that is, the training loss no longer decreased even lowering the learning
rate. This allows to use the obtained results to draw unbiased conclusions about
the effectiveness of the networks in removing both single and multiple artifacts
from videos, as well as on the impact that providing the networks with the noise
map or not has on the restoration performance.
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Concerning the use of the noise map for training, since the architectures of Fast-
DVDNet [28] and MdVRNet are designed to take a fixed number of channels as
input, the non-blind restoration has been performed by filling the noise map with
the distortion parameters used to generate the training samples, whereas the blind
restoration by filling the noise map with zeros: in the former case the networks
receive information about the intensity of the distortions affecting the input frames,
in the latter case they do not.

5.4 FastDVDNet on single artifacts
The first step towards the extension of FastDVDNet [28] to restore videos affected
by multiple artifacts is that of evaluating its flexibility in restoring videos corrupted
by different but single distortions. To this end, several experiments have been
conducted on videos affected by single distortions, i.e. noise, blur and compression
artifacts. The motivation behind these experiments is that, if the network is not
able to restore single-distorted videos, it will not be able to restore them when
multiple distortions are present.
Besides, given that Tassano et al. [28] did not provide any evaluation concerning
how the results change whether the noise map is used or not, these experiments
also have the purpose of assessing this aspect. For simplicity reasons, the model
trained using the noise map is called “non-blind”, as it receives information about
degradation operators, whereas the model trained without the noise map is called
“blind”, as it does not know the intensity of the artifacts affecting the video
sequence.

5.4.1 Denoising
The first experiment aims to evaluate how the denoising performance of FastDVD-
Net [28] changes whether information about degradation operators is used or not.
In fact, although the network is designed to remove noise from videos, only the
results obtained by the non-blind model are available. To perform this comparison,
two new models, one using the noise map and one not, have been trained using the
same training configuration and evaluated.
The training samples have been generated by adding additive white Gaussian noise
with σ randomly extracted from the [5, 55] range to the clean frames. Note that,
given a sample consisting of five consecutive frames, the added noise has the same
value of σ, meaning that every frame within a training sample has the same noise
intensity. Moreover, since the pixel values after adding noise may exceed the [0, 255]
range, all the values outside such range have been clipped.
The denoising performance of FastDVDNet [28] is reported in Figure 5.1. As
expected, the performance obtained by the non-blind model is better than the one
obtained by the blind model. This is due to the fact that, in the latter case, the
network does not know the level of noise affecting the video sequence. Indeed, the
network removes some noise from the noisy frames, but it is unable to completely
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Figure 5.1: Performance achieved by FastDVDNet [28] in removing additive white
Gaussian noise from videos as the value of the standard deviation σ changes. The
non-blind model makes use of the noise map, while the blind model does not.

remove it because it is unable to estimate its intensity. On the contrary, the
non-blind model is aware about the noise intensity, hence it can effectively remove
more noise than the blind approach.
The distance between the lines representing the restoration performance of the two
models in the PSNR plot is almost constant for all the values of σ, meaning that
the ability of the network in removing noise decreases in the same way in both
the approaches as the noise intensity increases. Instead, in the SSIM plot, the gap
between the two lines increases as the value of σ grows up, indicating that the
results produced by the blind model are more perceptually different than the ones
produced by the non-blind model when the noise is severe.
Since the curve representing the noisy frames is much below the others, the network
is able to remove the added noise. This claim is also confirmed by some qualitative
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Figure 5.2: Qualitative results of FastDVDNet [28] in removing additive white
Gaussian noise with σ = 50. Noisy frames on the left, restored frames on the right.

results shown in Figure 5.2.
For these reasons, it is possible to conclude that providing FastDVDNet [28] with
information about the distortion intensity (the value of σ in this case) affecting
the video sequence helps the network improve the denoising performance. It is
important to notice that, although the training settings used in this experiment
are very different from the ones used by Tassano et al. [28] in their paper (and
reported in Subsection 4.3.6), the obtained denoising performance is very close
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to theirs in terms of PSNR. This means that the network is able to learn how to
remove noise from videos even with much less training iterations (64000 instead of
320000).

5.4.2 Deblurring
The second experiment carried out aims to measure the capability of FastDVDNet
[28] in removing out-of-focus blur from videos.
To simulate out-of-focus blur, the video sequences have been blurred using Gaussian
kernels of different sizes and values of σ. More in detail, given a training sample
consisting of five adjacent frames, each frame has been convolved with a Gaussian
kernel whose value of σ is randomly extracted from the [1, 6] range: σ = 1 means
soft blur, σ = 6 means heavy blur. As for the denoising evaluation described in
Subsection 5.4.1, all the frames within a training sample have been blurred using
the same blur kernel, hence they all have the same blur intensity. Also in this case,
other than evaluating the applicability of FastDVDNet [28] to videos affected by
out-of-focus blur, the deblurring performance has been studied in the cases of blind
and non-blind restoration.
Quantitative results are reported in Figure 5.5. The first observation is about the
impact that using the noise map has on the deblurring performance of FastDVDNet
[28]. In fact, the gap between the lines representing the restoration performance of
the non-blind and blind models is quite high, meaning that providing the network
with information about the blur affecting video sequences is highly beneficial and
helps improve the deblurring performance. This is true both in terms of PSNR
and SSIM [12]. Concerning PSNR, the non-blind restoration outperforms the blind
one by about 2 dB for each value of σ tested. Regarding SSIM [12], the same
consideration applies, as the non-blind restoration always outperforms the blind
one by about 0.02. In addition, the gap is almost constant even though the value
of σ increases, definitively demonstrating the superiority of the non-blind model
with respect to the blind one.
Figure 5.4 shows qualitative results of blurred frames restored by FastDVDNet
[28]. As shown, the network is able to recover the high-frequencies lost during
the blurring process even if the blur introduced by Gaussian kernels is quite high
(σ = 5 in this case).
In order to evaluate the effectiveness of FastDVDNet [28] in removing out-of-focus
blur from videos, it is necessary to have at least a comparison method. However,
in the literature, there is no recent work focusing on removing Gaussian blur
from videos, as they all consider other types of blur (e.g., both EDVR [24] and
DeBlurNet [17] restore videos affected by motion blur). Moreover, the recent
state-of-the-art approaches for single image deblurring also focus on other types of
blur kernels, different from the Gaussian one. For these reasons, the deblurring
ability of FastDVDNet [28] has been compared with traditional non-blind single
image deblurring methods, that is, the Wiener filtering, the Lucy-Richardson
algorithm [63][64] and the Regularized filtering. All these methods perform non-
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Figure 5.3: Performance achieved by FastDVDNet [28] in removing Gaussian blur
from videos as the value of the standard deviation σ changes. The non-blind model
makes use of the noise map, while the blind model does not.

blind deconvolutions and require the exact or approximated point-spread function
(PSF) to recover the clean image from the blurred one.
One may notice that FastDVDNet [28] works on video sequences, while the other
methods work on single images. Using sequences of five frames to carry out this
evaluation may lead to an unfair comparison, as the network can exploit temporal
redundancies while the other methods cannot, thus achieving worse deblurring
performance. To address this problem, as FastDVDNet [28] is designed to take five
consecutive frames as input, the simplest solution is that of using the same frame
replicated five times so that it is not possible for the network to look for similar
pixels in the other frames and exploit temporal redundancies. Therefore, for this
experiment, the same frames replicated five times have been fed to the network to
emulate single image deblurring.
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Figure 5.4: Qualitative results of FastDVDNet [28] in removing Gaussian blur with
σ = 5. Blurred frames on the left, restored frames on the right.

The obtained results are reported in Table 5.1. Wiener filtering is the most effective
method in removing Gaussian blur from images, both in terms of PSNR and
SSIM [12]. However, it requires the exact PSF used to degrade the image, and it
produces unacceptable results when another PSF is provided. The Lucy-Richardson
algorithm [63][64] shows poor performance and it is the worst deblurring method
among the compared ones. Besides, the Regularized filtering performance is very
close to the deblurring performance obtained by FastDVDNet [28]. Concerning
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Table 5.1: Comparison between FastDVDNet [28] and existing traditional decon-
volution methods in restoring images affected by out-of-focus blur as the value of
the standard deviation σ changes. The blind model makes use of the noise map,
while the blind model does not.

Metric σ
Weiner
filtering

Lucy-Richardson
algorithm [63][64]

Regularized
filtering

Blind
FastDVDNet [28]

Non-blind
FastDVDNet [28]

PSNR

3
3.5
4
4.5
5
5.5

39.921
38.503
35.723
34.924
34.011
33.871

27.360
26.553
25.903
25.354
24.883
24.472

30.933
30.282
29.098
28.744
28.452
28.198

31.720
30.919
30.083
29.388
28.600
28.035

33.700
32.898
32.025
31.299
30.565
29.817

SSIM

3
3.5
4
4.5
5
5.5

0.955
0.952
0.935
0.929
0.925
0.921

0.826
0.807
0.792
0.779
0.768
0.758

0.891
0.880
0.858
0.850
0.844
0.838

0.912
0.900
0.876
0.864
0.845
0.826

0.926
0.914
0.893
0.877
0.858
0.839

PSNR, both the blind and the non-blind FastDVDNet [28] models outperform the
Regularized filtering. In terms of SSIM [12], the latter is better than the blind
FastDVDNet [28] model when the blur is severe (5.5 in this case).
Although in some cases traditional deconvolution methods are able to achieve
better performance, they all require the PSF used to blur the images, in contrast
to FastDVDNet [28] that has shown good performance even in the case of blind
deblurring. Therefore, it is possible to conclude that FastDVDNet [28] is also
able to effectively restore videos affected by out-of-focus blur with different level
of severity in the case of non-blind restoration, but its deblurring performance
considerably decreases when performing blind video deblurring. It is worth pointing
out that the non-blind FastDVDNet [28] model requires just the value of σ instead
of the whole degradation kernel.

5.4.3 Deblocking
The third experiment has the purpose of studying the performance of FastDVDNet
[28] in restoring videos affected by compression artifacts.
Given a training sample consisting of five adjacent frames, each frame has been
independently compressed using the JPEG compression algorithm with a random
value of q extracted from the [15, 35] range. Such lossy compression introduces
visible blocking artifacts, whose size is 8 × 8. In contrast to the σ parameter
of additive white Gaussian noise and Gaussian blur, here high values of q mean
less compression, so the blocking artifacts become less visible and the deblocking
performance is expected to increase.
The deblocking performance of FastDVDNet [28] is reported in Figure 5.5. Even
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Figure 5.5: Performance achieved by FastDVDNet [28] in removing JPEG com-
pression artifacts from videos as the value of the quality factor q changes. The
non-blind model makes use of the noise map, while the blind model does not.

in this case, as happens for video denoising and deblurring, the non-blind model
outperforms the blind one by about 0.1 dB in PSNR and about 0.003 in SSIM [12].
Despite this difference is quite low, using the noise map to provide the network
with the q value used to compress frames of video sequences contributes to increase
the deblocking performance.
Figure 5.6 shows four frames compressed with the JPEG algorithm and restored
by FastDVDNet [28]. As shown, the network is able to remove the introduced
blocking artifacts.
In order to understand the effectiveness of FastDVDNet [28] in removing JPEG
compression artifacts from videos, it is necessary to compare it with some state-
of-the-art approaches for compression artifact removal. In the literature, such
methods mainly focus on other types of compression algorithms, such as AVC and
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Figure 5.6: Qualitative results of FastDVDNet [28] in removing JPEG artifacts
with q = 15. Compressed frames on the left, restored frames on the right.

HEVC, which exploit temporal redundancies among adjacent frames. Nevertheless,
there are many works in the literature focusing on removing JPEG artifacts from
images. For this reason, the deblocking performance of FastDVDNet [28] has been
compared with the performance obtained by six state-of-the-art methods working
on single images. These approaches have already been studied by Zini et al. [65] on
the BSDS500 dataset [66] with specific values of the quality factor q. Evaluating
FastDVDNet [28] on such dataset using those values of the quality factor allows a
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fair comparison. As for the comparison described in Subsection 5.4.2, FastDVDNet
[28] has been evaluated on single images following the same procedure, that is,
using the same frames replicated five times.
Table 5.2 reports the deblocking performance of FastDVDNet [28], ARCNN [4],
DMCNN [67], MWCNN [68], S-NET [69], ARGAN [70] and RRDB [65] on the
BSDS500 test set [66] using quality factors q equal to 10, 20 and 40. The reported

Table 5.2: Comparison between FastDVDNet [28] and existing deep learning
methods in removing JPEG artifacts from the images of the BSDS500 test set [66].
The results refer to the Y channel of the YCbCr color space. The blind model
makes use of the noise map, while the blind model does not.

Metric q ARCNN [4] DMCNN [67] MWCNN [68] S-NET [69] ARGAN [70] RRDB [65] Blind
FastDVDNet [28]

Non-blind
FastDVDNet [28]

PSNR
10
20
40

29.10
31.25
33.55

29.67
31.98
-

29.50
31.34
33.23

29.82
32.15
34.45

29.05
31.23
33.45

29.92
32.23
34.61

29.60
32.02
34.32

29.53
32.03
34.13

SSIM
10
20
40

0.819
0.885
0.929

0.840
0.904
-

0.835
0.889
0.928

0.844
0.905
0.941

0.806
0.877
0.923

0.847
0.906
0.943

0.834
0.899
0.937

0.834
0.900
0.933

performance refers to the Y channel of the YCbCr color space. It is worth noting
that, except for FastDVDNet [28] and RRDB [65] that can handle different values
of q with a single model, the values of PSNR and SSIM [12] in Table 5.2 for the
other methods come from different models trained to deal with images compressed
using a specific value of q. This means that, for example, a model of ARCNN [4] is
trained on images compressed with q = 10 and another model is trained on images
compressed with q = 20.
The FastDVDNet [28] model has been trained using frames compressed with q within
the [15, 35] interval and it has never seen images compressed with q equals 10 or 40.
Nevertheless, it manages to obtain state-of-the-art performance. For example, the
blind FastDVDNet [28] model always outperforms ARCNN [4], MWCNN [68] and
ARGAN [70] in terms of both PSNR and SSIM [12]. An interesting observation can
be done about the performance obtained by the blind and non-blind FastDVDNet
[28] models. In fact, the blind model outperforms the non-blind one when they
are tested using q values never seen at training time. Filling the noise map with
values of q never seen during training may confuse the model at inference time,
thus causing a drop in its deblocking performance.
From these experiments it is possible to conclude that FastDVDNet [28] is able
to effectively remove blocking artifacts caused by the JPEG algorithm from video
sequences. Using the noise map to provide the network with the true value of the
quality factor q used to compress the frames of a video sequence allows to increase
the deblocking performance. The comparison with some deblocking methods
working on single images has shown that FastDVDNet [28] can be applied also to
images achieving state-of-the-art performance, outperforming some competitive
approaches with a single model also when images are compressed using quality
factors never seen during training. However, filling the noise map with values of q
never seen during the training process causes a drop in the deblocking performance.
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5.5 FastDVDNet on multiple artifacts
The experimental results reported in Section 5.4 have shown the flexibility of
FastDVDNet [28] in removing different artifacts from videos and the superiority
of the non-blind approach with respect to the blind one. The next step is that
of assessing the ability of FastDVDNet [28] to restore videos affected by multiple
artifacts. This because, if the network achieves very low performance when dealing
with multiple distortions simultaneously, it could be difficult to use it as baseline
model because there may be too many architectural modifications to make.
To this end, FastDVDNet [28] has been trained and evaluated on videos corrupted
by multiple distortions, that is, noise followed by compression artifacts and blur
followed by compression artifacts. The reason why only these two distortion com-
binations have been considered is explained in Section 2.4.
Note that the noise map, which is a single channel feature map containing infor-
mation about distortion parameters, has been expanded from one channel to two
channels, since there are two different artifacts affecting the video sequences at the
same time. When performing blind restoration, both the channels are filled with
zeros, whereas in the case of non-blind restoration the first channel is filled with
the standard deviation of additive white Gaussian noise or Gaussian filters used to
emulate out-of-focus blur and the second channel with the quality factor used by
the JPEG compression algorithm.

5.5.1 Denoising and deblocking
The first experiment on multi-distorted videos aims to measure the effectiveness of
FastDVDNet [28] in restoring noisy videos compressed using the JPEG algorithm.
The training samples to carry out this evaluation have been generated first by
adding additive white Gaussian noise, whose value of σ is randomly drawn from
the [5, 55] range, to the original training samples consisting of five adjacent frames,
and then compressing each single noisy frame using the JPEG algorithm, with
a random quality factor q in the [15, 35] range. Also here, every frame within a
training sample contains the same artifact intensity, that is, the σ parameter and
the q factor used to introduce the artifacts are the same for all the frames of the
training sample.
The restoration performance obtained by FastDVDNet [28] are reported in Table
5.3. Also in the case of multi-distorted videos, providing the network with the infor-
mation about the distortion severity allows to improve the restoration performance.
As expected, the best performance are obtained when the noise intensity is low
and the quality factor is high (top-right cell of the table). The same consideration
is also valid for the opposite case (bottom-left cell of the table). It can be observed
that the performance increases moving along the anti-diagonal of the table, that is,
as the σ value related to the noise intensity decreases and the q value related to the
JPEG compression increases. Moreover, it is possible to see that the performance
related to σ equal to 10 and 20 is very close to the performance reported in Figure
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Table 5.3: Performance obtained by FastDVDNet [28] in restoring videos simul-
taneously affected by additive white Gaussian noise (with standard deviation σ)
and JPEG compression artifacts (with quality factor q). The results are reported
as PSNR/SSIM [12]. Each cell is composed of two rows: the first one represents
the non-blind model, while the second one represents the blind model. The blind
model makes use of the noise map, while the blind model does not.

σ q 15 20 25 30 35

10 31.894/0.882 32.937/0.901 33.647/0.912 34.161/0.920 34.551/0.924
31.167/0.858 32.348/0.881 33.047/0.895 33.559/0.903 33.901/0.908

20 31.608/0.874 32.391/0.888 32.879/0.896 33.208/0.901 33.448/0.905
30.922/0.847 31.940/0.876 32.447/0.886 32.799/0.892 33.007/0.894

30 31.068/0.858 31.641/0.869 31.969/0.874 32.177/0.878 32.333/0.881
30.567/0.842 31.135/0.850 31.505/0.857 31.755/0.863 31.894/0.867

40 30.465/0.839 30.876/0.847 31.103/0.852 31.242/0.854 31.337/0.856
29.918/0.817 30.268/0.823 30.588/0.832 30.813/0.839 30.919/0.842

50 29.842/0.820 30.154/0.826 30.306/0.829 30.396/0.831 30.461/0.832
29.373/0.802 29.669/0.807 29.910/0.815 30.061/0.820 30.129/0.822

5.5, indicating that the network can effectively remove JPEG artifacts even in the
presence of mild noise.
In order to assess the effectiveness of FastDVDNet [28] in restoring noisy and
compressed videos, a comparison with the state of the art is needed. However,
a thorough research in the literature did not yield any result about approaches
designed to perform multi-distorted video restoration considering noisy and com-
pressed videos, except EDVR [24] that deals with other distortion types, i.e. motion
blur and compression artifacts.
Since there are no methods for the comparison, the restoration performance of
FastDVDNet [28] on multi-distorted videos has been compared with the perfor-
mance obtained by placing two state-of-the-art approaches for video compression
artifact reduction and video denoising in cascade. In this case, the output of the
first model is used as input to the second one. Note that the first model should
remove compression artifacts, while the second model should remove noise. This
because, during the degradation process, noise is introduced before compression
artifacts, therefore, during the restoration process, it is reasonable to remove com-
pression artifacts first. In ideal conditions, one expects the first model to remove
compression artifacts from the input frames, leaving the artifacts related to noise
unchanged. Then, since the frames should contain just noise, the second model is
expected to remove that noise, producing a clean video sequence.
Regarding the video compression artifact reduction method, the recent approaches
in the literature do not address JPEG artifacts. However, FastDVDNet [28] trained
to remove JPEG artifacts has shown its effectiveness in this task, allowing to
achieve state-of-the-art performance. For this reason, the same non-blind model
of FastDVDNet [28] employed for the evaluation in Subsection 5.4.3 has been
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used. Concerning the video denoising method, the choice has directly fallen on
FastDVDNet [28], as video denoising is its original task. In particular, the same
non-blind model adopted for the evaluation in Subsection 5.4.1 as been used.
The results obtained by applying the aforementioned cascade of two artifact-specific
models are reported in Table 5.4. At a glance, it is possible to notice that the

Table 5.4: Comparison between non-blind FastDVDNet [28] and the two artifact-
specific models placed in cascade in restoring videos simultaneously affected by
additive white Gaussian noise (with standard deviation σ) and JPEG compression
artifacts (with quality factor q). The results are reported as PSNR/SSIM [12].
Each cell is composed of two rows: the first one represents FastDVDNet [28], while
the second one the cascade of the two artifact-specific models.

σ q 15 20 25 30 35

10 31.894/0.882 32.937/0.901 33.647/0.912 34.161/0.920 34.551/0.924
31.420/0.870 32.300/0.886 32.904/0.896 33.328/0.904 33.665/0.908

20 31.608/0.874 32.391/0.888 32.879/0.896 33.208/0.901 33.448/0.905
30.518/0.847 31.183/0.859 31.585/0.865 31.868/0.870 32.062/0.873

30 31.068/0.858 31.641/0.869 31.969/0.874 32.177/0.878 32.333/0.881
29.243/0.797 29.631/0.799 29.880/0.803 30.008/0.805 30.060/0.807

40 30.465/0.839 30.876/0.847 31.103/0.852 31.242/0.854 31.337/0.856
27.702/0.707 27.947/0.709 28.026/0.711 28.097/0.713 28.173/0.716

50 29.842/0.820 30.154/0.826 30.306/0.829 30.396/0.831 30.461/0.832
26.211/0.612 26.335/0.614 26.399/0.616 26.450/0.617 26.512/0.619

performance obtained by the cascade of the two artifact-specific models is lower
than the one obtained by using a single model to handle both the artifacts. This
gap becomes more relevant when the intensity of the noise increases. In fact, the
mean difference between the two approaches when σ is equal to 10 is about 0.7 dB
for PSNR and 0.02 for SSIM [12], but it becomes about 3.8 dB and 0.21 when σ is
equal to 50. This means that restoring videos simultaneously corrupted by multiple
distortions using two artifact-specific methods in cascade is not an effective solution
when the artifacts become strong.
An example of a frame restored by the cascade of the two artifact-specific models
is shown in Figure 5.7. Here, only patches of size 64× 64 extracted from the full
frames are reported to better see the results. There are four patches in the figure:
the first image represents the distorted frame, affected by noise and compression
artifacts; the second image represents the output of the first model, which aims
to remove compression artifacts; the third image, corresponding to the restored
frame, represents the output of the second model, which aims to remove noise; the
fourth image corresponds to the ground truth. As shown, the first model, which
expected a frame corrupted just by JPEG artifacts, failed its task because of the
presence of excessive noise. As a consequence, the second model, which expected
a frame corrupted only by noise, was not able to remove the remaining artifacts,
leaving the frame with visible distortions.
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Figure 5.7: Example of a patch affected by additive white Gaussian noise (σ = 50)
and JPEG compression artifacts (q = 15) restored by a cascade of two artifact-
specific models. The first model removes compression artifacts, while the second
model removes noise. The first image represents the distorted patch, the second
image represents the output of the first model, the third image represents the
output of the second model, corresponding to the restored patch, while the fourth
image represents the ground truth.

From these experimental results it is possible to conclude that FastDVDNet [28]
is able to restore multi-distorted videos when they are corrupted by noise and
compression artifacts. Even in this case, as happens for single artifacts, providing
the network with information about the distortion intensity allows to increase the
restoration performance. Finally, trying to restore videos affected by noise and
compression artifacts using a cascade of two artifact-specific models, i.e. a model
for video compression artifact reduction and a model for video denoising, is not
an effective solution especially in the presence of strong artifacts, suggesting that
using a single model to handle both the distortions is the best solution.

5.5.2 Deblurring and deblocking
The second experiment on multi-distorted videos aims to assess whether FastDVD-
Net [28] is able to restore videos simultaneously affected by blur and compression
artifacts. Although the results are promising in the case of noise and compression
artifacts, it may happen that the network is unable to restore videos affected by
other distortion combinations. Indeed, working on blurred videos requires the
network to recover high-frequency components, which is a difficult task, and adding
compression artifacts makes this task even tougher.
The training samples for this experiment have been generated by blurring every
frame of the original training samples using Gaussian kernels, whose values of σ
are randomly extracted from the [1, 6] range. The obtained blurred frames are then
compressed by applying the JPEG algorithm using a random quality factor q in
the [15, 35] range. Even in this case, each frame of a training sample contains the
same distortion intensity.
The restoration performance obtained using FastDVDNet [28] properly trained to
handle Gaussian blur and JPEG related artifacts is reported in Table 5.5. Also
in this case, two models performing non-blind and blind restoration have been
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compared. As for all the experiments carried out so far, the non-blind model

Table 5.5: Performance obtained by FastDVDNet [28] in restoring videos simultane-
ously affected by Gaussian blur (with standard deviation σ) and JPEG compression
artifacts (with quality factor q). The results are reported as PSNR/SSIM [12].
Each cell is composed of two rows: the first one represents the non-blind model,
while the second one represents the blind model. The blind model makes use of
the noise map, while the blind model does not.

σ q 15 20 25 30 35

3 27.106/0.729 27.592/0.745 27.931/0.756 28.178/0.766 28.368/0.774
26.715/0.717 27.178/0.735 27.498/0.745 27.731/0.756 27.895/0.763

3.5 26.597/0.708 27.045/0.724 27.348/0.734 27.579/0.744 27.744/0.751
26.224/0.698 26.626/0.715 26.904/0.723 27.110/0.733 27.264/0.739

4 26.158/0.691 26.568/0.706 26.847/0.714 27.043/0.723 27.744/0.751
25.827/0.682 26.178/0.698 26.427/0.705 26.596/0.714 26.726/0.719

4.5 25.765/0.676 26.144/0.690 26.393/0.697 26.585/0.705 26.709/0.711
25.506/0.668 25.829/0.683 26.043/0.690 26.204/0.697 26.316/0.702

5 25.404/0.661 25.757/0.675 25.991/0.681 26.163/0.690 26.276/0.694
25.207/0.655 25.550/0.670 25.761/0.676 25.904/0.684 26.006/0.688

5.5 25.065/0.648 25.401/0.662 25.628/0.667 25.785/0.675 25.883/0.679
24.835/0.640 25.227/0.656 25.455/0.662 25.610/0.669 25.710/0.674

outperforms the blind one. However, the restoration performance on this specific
combination of distortions is much lower than the performance obtained on videos
corrupted by noise and compression artifacts, reported in Subsection 5.5.1. Indeed,
the best values of PSNR and SSIM [12] are 28.368 dB and 0.774, which are even
lower than the worst values of PSNR and SSIM [12] reported in Table 5.3 related
to noisy and compressed videos, which are 29.373 dB and 0.802, respectively. Espe-
cially for SSIM [12], which is a perceptive measure, 0.774 means that the difference
between the output frames and the ground truth is highly perceived by the human
eye. An example of a blurred and compressed frame restored by FastDVDNet [28]
is shown in Figure 5.8. As shown, the network is able to almost completely remove
the JPEG artifacts, but it fails to recover high-frequency components leaving the
frame blurred.
The obtained results allow to conclude that, although FastDVDNet [28] is effective
in restoring multi-distorted videos simultaneously corrupted by noise and compres-
sion artifacts, it is not when videos are affected by blur and compression artifacts.
Besides, since the results using this combination of distortions are not promising
even when the artifacts are mild, such artifact combination has not been further
investigated in the following experiments.
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Figure 5.8: Example of a multi-distorted frame (left) affected by Gaussian blur
(σ = 4) and JPEG compression artifacts (q = 15) restored by FastDVDNet [28]
(right)

5.6 Distortion parameter estimation
The results reported in Section 5.4 concerning the effectiveness of FastDVDNet
[28] in restoring videos affected by single distortions, i.e. noise, blur or compression
artifacts, show the superiority of the non-blind approach over the blind one. In fact,
the performance obtained when FastDVDNet [28] is provided with degradation
operator information is better than the one obtained when no information is given
to the network.
The noise map contains information about the degradation operator parameters
used to degrade the video sequences, making the network aware about the intensity
of the artifacts. However, while at training time such parameters are known, at
inference time they may not and, thus, an external resource to estimate them is
required. This problem has been discussed in Subsection 4.4.2, in which a CNN,
dubbed DPEN, has been devised to estimate the different distortion parameters
required by MdVRNet.
A set of experiments have been conducted in order to evaluate the accuracy of
DPEN in predicting the intensity of the distortions affecting video sequences, both
using single and multiple degradation operators, and its applicability in being
integrated into existing blind frameworks as a source of additional information to
increase restoration performance.

5.6.1 Parameter estimation on single distortions
The first experiment concerning DPEN aims to evaluate its accuracy in predicting
the artifact intensity when videos are affected by single distortions. Given an input
frame, DPEN is able to extract the parameters of specific distortions affecting it,
such as the σ value of additive white Gaussian noise and the quality factor q used by
the JPEG algorithm. Note that, when considering single-distorted videos, DPEN
must be trained to deal with that specific distortion. For instance, if the considered
task is video denoising, DPEN must be trained to predict the σ value of the additive
white Gaussian noise affecting the video sequence. Therefore, to conduct these
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experiments, three different DPEN models have been trained according to the
considered distortion type.
Regarding the training process of DPEN, all the models have been trained for 500
epochs on patches of size 64× 64 randomly extracted from the DAVIS 2017 train
set [61], using a learning rate initially set to 1e−4, L1 as loss function and Adam [62]
as optimizer. The learning rate has been reduced by a factor of 10 whenever the
loss function did not decrease for 20 consecutive epochs. Concerning the distortion
parameters, the same values described in Section 5.4 have been used to degrade the
frames, that is, σ ∈ [5, 55] for denoising, σ ∈ [1, 6] for deblurring and q ∈ [15, 35]
for deblocking.
Table 5.6 shows the performance, in terms of mean absolute error (MAE), achieved
by the DPEN models in predicting the distortion parameters of the three considered
degradation operators. Since MAE measures the error between the prediction and
the ground truth, the lower the value, the better. As shown, DPEN is able to infer

Table 5.6: Mean absolute error (MAE) of the three DPEN models in estimating
the distortion parameters of additive white Gaussian noise (AWGN), Gaussian blur
and JPEG compression

AWGN
σ MAE

10 0.708
20 0.824
30 0.947
40 1.101
50 1.243

Gaussian blur
σ MAE

1.5 0.223
2.5 0.225
3.5 0.238
4.5 0.272
5.5 0.209

JPEG compression
q MAE

15 1.897
20 1.877
25 2.189
30 2.269
35 3.750

quite accurate values of the σ parameter for both additive white Gaussian noise
and Gaussian blur. More in detail, concerning the σ parameter of AWGN, the error
increases as the noise intensity increases, while in the case of Gaussian blur the
error is almost constant as the severity of the blur becomes stronger. Concerning
the quality factor q used by the JPEG compression algorithm, DPEN infers values
with an error of about 2. Moreover, the error increases as the value of q increases.
This is due to the fact that, when the quality factor is quite high, blocking artifacts
are not as pronounced as they are when the value is low.
It is important to point out that DPEN is trained using patches of size 64× 64.
However, additional experimental results have shown that applying DPEN to
images of different sizes, i.e. 480× 854 in the case of the DAVIS 2017 dataset [61],
considerably increases the error. To solve this problem, the adopted solution is that
of decomposing the target image into 64× 64 non-overlapping patches, estimating
the distortion parameters on single patches using DPEN and finally averaging the
obtained estimations. Such procedure allows to obtain an error as close to zero as
possible, since there are some patches on which DPEN overestimates the distortion
parameter and others on which DPEN underestimates it, thus computing the mean
value allows to better approximate the real one.
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5.6.2 FastDVDNet on single distortions using the estimated
distortion parameters

The experimental results reported in Subsection 5.6.1 have shown that DPEN is
able to predict quite accurate values of different distortion parameters on frames
corrupted by single distortions. Further experiments have been carried out to under-
stand whether DPEN can be integrated into existing blind restoration frameworks
to provide them with additional information that could increase their restoration
performance.

Figure 5.9: Example of a noisy frame (left) restored by FastDVDNet [28] (right)
using the true distortion parameter value at training time and the parameter
inferred by DPEN at test time

Before starting with these experiments, it is important to comprehend whether
DPEN should be used only at inference time or also at training time. This because
it is possible that using different information for the same distortion at inference
time may confuse the network and cause a drop in the restoration performance.
DPEN is able to predict distortion parameter values up to a certain precision
limit. Although such error may appear quite low, the network may fail the restora-
tion process because, during training, it has learned a mapping between a value,
corresponding to the distortion parameter, and the intensity of artifacts in the
video sequence and, at inference time, such mapping is broken. This statement
is exemplified in Figure 5.9, which shows a noisy frame restored by FastDVDNet
[28] trained using the true distortion parameters and tested using the parameters
inferred by DPEN. As shown, the network is not able to completely remove the
noise from the frame. This is due to the fact that, at training time, there is no
error concerning the distortion parameter used, while at inference time the error
introduced by DPEN, never seen during training, breaks the learned mapping. This
consideration suggests that using the value inferred by DPEN to fill the noise map
also at training time should preserve the mapping learned between the estimated
distortion parameter and the intensity of the artifacts in the video sequences and,
hence, the restoration performance is expected to increase. According to this
consideration, FastDVDNet [28] has been trained using the distortion parameters
predicted by DPEN.
The restoration performance obtained by FastDVDNet [28] using the distortion
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Table 5.7: Comparison among the performance obtained by three different Fast-
DVDNet [28] models, i.e. the non-blind model, the blind model and the model
using the distortion parameters inferred by DPEN, on different restoration tasks
involving single-distorted video sequences. The non-blind model uses the true
distortion parameter values, while the blind model does not use any additional
information. The results are reported as PSNR/SSIM [12].

Denoising
σ True information (non-blind) No information (blind) Information estimated by DPEN

10 38.315/0.962 37.291/0.951 35.384/0.909
20 35.096/0.929 34.333/0.917 34.180/0.919
30 33.193/0.898 32.259/0.881 32.224/0.885
40 31.860/0.870 30.829/0.847 30.836/0.851
50 30.830/0.845 29.782/0.817 29.741/0.818

Deblurring
σ True information (non-blind) No information (blind) Information estimated by DPEN

3 33.196/0.915 31.120/0.898 31.117/0.900
3.5 32.163/0.897 30.420/0.881 30.469/0.864
4 31.426/0.880 29.884/0.865 29.761/0.837
4.5 30.836/0.866 29.289/0.845 28.941/0.810
5 30.553/0.856 28.801/0.831 28.251/0.784
5.5 29.897/0.833 28.236/0.814 27.267/0.745

Compression artifact reduction
q True information (non-blind) No information (blind) Information estimated by DPEN

15 31.656/0.878 31.522/0.874 31.273/0.870
20 32.784/0.901 32.643/0.897 32.014/0.894
25 33.619/0.913 33.448/0.909 33.012/0.903
30 34.235/0.923 34.106/0.921 33.791/0.916
35 34.784/0.930 34.628/0.928 34.119/0.920

parameters estimated by DPEN on different restoration tasks is reported in Table
5.7. To better show how the performance changes when the network is provided
with the true information, the information estimated by DPEN and no informa-
tion about the distortion parameters related to the artifacts affecting the video
sequences, also the results already presented in Section 5.4 are reported in the
table.
As expected, the best restoration performance is obtained by providing the network
with the true values of the distortion parameters (non-blind approach). However,
this result does not have much value in this case because, as mentioned, having
exact information about the artifacts affecting a video sequence is not always
possible. Interestingly, using the parameter estimation made by DPEN leads to
a decline in performance. Indeed, in all the three restoration tasks, even the
performance obtained by the blind approach is higher than the one obtained using
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the information inferred by DPEN. The most plausible reason to explain this fact is
related to the errors made by DPEN in predicting the distortion parameter values.
Although these errors are quite low, as discussed in Subsection 5.6.1, the negative
impact they have is higher than expected. This means that wrong information
confuses the network preventing the correct restoration process, and it is better to
provide no information at all instead of providing distorted one.

5.6.3 Parameter estimation on multiple distortions
When video sequences are corrupted by single degradation operators, the intro-
duced artifacts are different from the ones introduced by multiple degradation
operators, both in shape and distribution. This means that, although DPEN has
shown accurate results in predicting the degradation operator parameters on videos
affected just by single distortions, the prediction accuracy may be very different
when multiple artifacts are present.
In order to evaluate the effectiveness of DPEN in predicting distortion information
in the case of multi-distorted videos, two distinct models have been trained and
evaluated considering the noise/compression and the blur/compression combina-
tions. To carry out these experiments, DPEN has been modified to output two
parameters, corresponding to σ and q, where σ is the parameter related to either
additive white Gaussian noise or Gaussian blur depending on the considered artifact
combination.
The training process is equal to the one described in Subsection 5.6.1, but with
a difference about the loss function used. Since there are two parameters to esti-
mate, two L1 loss functions are computed between the regressed values and their
corresponding real values, and the final loss is simply the summation of these two
loss functions.
The performance measured in MAE obtained by DPEN in predicting the distor-
tion parameters of two different distortion combinations, i.e. noise/compression
and blur/compression, is reported in Table 5.8. Concerning the combination
noise/compression, it is possible to notice that the error made in estimating the
σ value is much higher than the error made when the frame is corrupted just by
noise, as reported in Table 5.6. Indeed, the maximum error increased from 1.24
to 4.57. Interestingly, while in the previous case the error made increases as the
degradation intensity increases, here the opposite happens, i.e. the stronger the
noise level, the lower the error made by DPEN. In addition, the error decreases as
the quality factor q increases. The estimated q related to JPEG artifacts is quite
precise, especially in the presence of strong noise, and the MAE is very similar
to the MAE reported in Table 5.6. This means that DPEN is not sensitive to
noise when inferring the distortion parameter related to compression artifacts.
Furthermore, as happens for single distortions, the higher the compression, the
higher the error made in predicting the q parameter.
Regarding the blur/compression combination, the error made in estimating the
σ parameter of Gaussian blur increases by about 0.2 with respect to the error
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Table 5.8: Mean absolute error of the two DPEN models in estimating the distortion
parameters on videos affected by two distortion combinations, i.e. noise/compression
and blur/compression

Noise/compression combination
Estimated parameter: σ (AWGN)

σ q 15 20 25 30 35
10 4.567 4.124 3.754 3.498 3.469
20 4.131 3.613 3.285 3.099 3.118
30 3.738 3.367 3.057 2.899 2.903
40 3.566 3.281 3.103 2.780 2.882
50 3.993 2.888 2.697 2.452 2.464

Estimated parameter: q (JPEG)
σ q 15 20 25 30 35
10 3.023 1.835 2.179 2.671 4.280
20 1.795 1.568 1.937 2.065 3.007
30 1.409 1.254 1.644 1.772 2.313
40 1.267 1.254 1.623 1.604 2.139
50 1.322 1.164 1.629 1.546 1.711

Blur/compression combination
Estimated parameter: σ (Gaussian blur)
σ q 15 20 25 30 35
1.5 0.480 0.448 0.417 0.407 0.395
2.5 0.496 0.463 0.415 0.404 0.401
3.5 0.470 0.426 0.395 0.377 0.362
4.5 0.461 0.416 0.398 0.394 0.381
5.5 0.628 0.531 0.517 0.480 0.461

Estimated parameter: q (JPEG)
σ q 15 20 25 30 35
1.5 2.212 2.340 2.164 2.179 3.688
2.5 1.832 1.890 1.913 1.877 2.722
3.5 1.589 1.553 1.817 1.745 2.348
4.5 1.471 1.453 1.746 1.695 2.251
5.5 1.493 1.462 1.801 1.725 2.146

related to blurred and uncompressed frames. Also in this case, the error decreases
when the value of q increases. Besides, the q parameter is more accurate when the
compression is high, as also happens for the noise/compression combination.
Even in the presence of multiple artifacts, at inference time, using DPEN on frames
with a size greater than 64× 64 leads to less accurate results. Therefore, the same
procedure described in Subsection 5.6.1 should be adopted, that is, the tested frame
is decomposed into 64× 64 non-overlapping patches, each of which is processed by
DPEN generating two values and the final values are obtained by averaging all the
values related to the first distortion and all the values related to the second one.

5.6.4 FastDVDNet on multiple distortions using the esti-
mated distortion parameters

Although using the information extracted by DPEN has led to worse restoration
performance in the case of single distortions, as demonstrated by the experiments
in Subsection 5.6.2, it may happen that providing the network with approximated
information is better than using no information at all when videos are affected by
multiple distortions, because of the additional complexity of the artifacts introduced
by multiple degradation operators. To verity this claim, FastDVDNet [28] has been
trained on video sequences affected by multiple artifacts using DPEN as distortion
parameter estimator.
The restoration performance obtained on videos simultaneously corrupted by ad-
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ditive white Gaussian noise and JPEG artifacts is reported in Table 5.9, which
shows how the performance changes as the artifacts become stronger. Note that

Table 5.9: Comparison among the performance obtained by three different FastD-
VDNet [28] models, i.e. the non-blind model, the blind model and the model using
the distortion parameters inferred by DPEN, on video sequences simultaneously
affected by additive white Gaussian noise (with standard deviation σ) and JPEG
compression artifacts (with quality factor q). The non-blind model uses the true
distortion parameter values, while the blind model does not use any additional
information. The results are reported as PSNR/SSIM [12]. Each cell is composed of
three rows: the first one represents the non-blind model, the second one represents
the blind model, while the third one represents the model using the distortion
parameters estimated using DPEN.

σ q 15 20 25 30 35

10
31.894/0.882 32.937/0.901 33.647/0.912 34.161/0.920 34.551/0.924
31.167/0.858 32.348/0.881 33.047/0.895 33.559/0.903 33.901/0.908
31.678/0.876 32.574/0.889 33.100/0.899 33.735/0.909 34.221/0.915

20
31.608/0.874 32.391/0.888 32.879/0.896 33.208/0.901 33.448/0.905
30.922/0.847 31.940/0.876 32.447/0.886 32.799/0.892 33.007/0.894
31.106/0.863 32.040/0.878 32.549/0.886 32.877/0.890 33.094/0.893

30
31.068/0.858 31.641/0.869 31.969/0.874 32.177/0.878 32.333/0.881
30.567/0.842 31.135/0.850 31.505/0.857 31.755/0.863 31.894/0.867
30.710/0.848 31.296/0.857 31.643/0.863 31.878/0.867 32.005/0.869

40
30.465/0.839 30.876/0.847 31.103/0.852 31.242/0.854 31.337/0.856
29.918/0.817 30.268/0.823 30.588/0.832 30.813/0.839 30.919/0.842
30.098/0.827 30.582/0.837 30.826/0.841 30.982/0.845 31.041/0.845

50
29.842/0.820 30.154/0.826 30.306/0.829 30.396/0.831 30.461/0.832
29.373/0.802 29.669/0.807 29.910/0.815 30.061/0.820 30.129/0.822
29.468/0.808 29.899/0.817 30.047/0.820 30.159/0.822 30.208/0.823

the first two rows of each cell are the same as the ones in Table 5.3, but they
are also reported here to better see the difference of the three approaches. The
first consideration is related to the non-blind approach that, even in this case,
shows the best performance. Interestingly, in contrast to the results obtained
in Subsection 5.6.2 concerning single-distorted videos, estimating the distortion
parameters affecting the video sequences on multi-distorted videos allows to in-
crease the restoration capability of the network. Indeed, the performance obtained
by FastDVDNet [28] using DPEN as source of information about degradation
operators is always higher than the one of the blind approach in terms of PSNR,
while the SSIM [12] is lower in only a few cases. This means that, when dealing
with multi-distorted videos, providing the network with approximated information
about the degradation operators is better than providing no information at all. This
may be related to the fact that combinations of degradation operators introduce
more complex artifacts than single operators, and using approximated information
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helps the network understand how to remove them.
The results reported in Subsection 5.5.2 have shown that FastDVDNet [28] is not
effective in restoring videos affected by blur and compression artifacts, even when
the network receives the exact information about the distortion parameters σ and
q. In all the experiments conducted so far, non-blind models have shown better per-
formance with respect to the others. This because the network is provided with the
real information about the degradation operators affecting the video sequences and,
hence, it learns how to exploit such information to properly remove the artifacts.
Using the distortion parameters estimated by DPEN would lead to restoration
performance lower than the one obtained by the non-blind approach, which is
already quite low, because the network would be provided with noisy information.
For this reason, FastDVDNet [28] has not been trained and evaluated using the
distortion parameters inferred by DPEN for the blur/compression combination.
The experiments carried out using DPEN to provide FastDVDNet [28] with in-
formation about degradation operator parameters, when handling multi-distorted
videos, have shown a performance improvement with respect to the blind approach,
meaning that this strategy could be adopted by blind methods to increase the
effectiveness in restoring videos corrupted by multiple distortions.

5.7 MdVRNet on multiple artifacts
So far, several experiments have been conducted in order to verify both the flexibil-
ity of FastDVDNet [28] in performing restoration tasks different from the one it is
designed for, i.e. video denoising, and its applicability in restoring multi-distorted
videos. The network has shown high flexibility, as it outperforms traditional
methods in removing out-of-focus blur and deep learning approaches in removing
JPEG compression artifacts. Concerning multi-distorted video restoration, the
obtained results demonstrated that using a network to remove multiple artifacts
simultaneously is better than using two artifact-specific models in cascade, also
revealing the effectiveness of FastDVDNet [28] in handling multiple distortions. In
addition, the experiments described in Section 5.6 demonstrated that estimating the
degradation operator parameters using DPEN and providing them to FastDVDNet
[28] allows to increase its restoration performance when videos are corrupted by
noise and compression artifacts.
The aforementioned considerations are fundamental for the proposed MdVRNet
framework. Indeed, one of the main ideas behind this network is that of incorpo-
rating a preliminary step aiming to estimate the degradation operator parameters
to make the network aware about the distortion intensity and help it improve the
quality of the results. Moreover, since MdVRNet inherits the main characteristics
of FastDVDNet [28], the effectiveness of the baseline model in removing multiple
artifacts from videos is inherited, too, providing a lower bound to the restoration
performance.
The main improvements over the FastDVDNet [28] architecture are related to the
introduction of an original distortion parameter estimation module, i.e. DPEN, and
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the novel multi-scale restoration block, which extends the original denoising block
of FastDVDNet [28] by adding a full-resolution stream, for detail preservation,
and an attention mechanism to weight the features coming from the two parallel
branches according to their importance in reconstructing the target frame. More
detailed information can be found in Section 4.4.

Table 5.10: Comparison between MdVRNet and FastDVDNet [28] using the
distortion parameters estimated by DPEN in restoring videos simultaneously
affected by additive white Gaussian noise (with standard deviation σ) and JPEG
compression artifact (with quality factor q). The results are reported as PSNR/SSIM
[12]. Each cell is composed of two rows: the first one represents MdVRNet, while
the second one represents FastDVDNet [28]

σ q 15 20 25 30 35

10 31.861/0.881 32.886/0.900 33.592/0.912 34.111/0.920 34.484/0.924
31.678/0.876 32.574/0.889 33.100/0.899 33.735/0.909 34.221/0.915

20 31.600/0.874 32.479/0.889 32.984/0.897 33.306/0.902 33.561/0.906
31.106/0.863 32.040/0.878 32.549/0.886 32.877/0.890 33.094/0.893

30 31.083/0.857 31.725/0.869 32.049/0.874 32.266/0.878 32.431/0.881
30.710/0.848 31.296/0.857 31.643/0.863 31.878/0.867 32.005/0.869

40 30.495/0.838 30.931/0.847 31.154/0.851 31.309/0.854 31.425/0.857
30.098/0.827 30.582/0.837 30.826/0.841 30.982/0.845 31.041/0.845

50 29.776/0.816 30.140/0.823 30.288/0.826 30.408/0.829 30.501/0.831
29.468/0.808 29.899/0.817 30.047/0.820 30.159/0.822 30.208/0.823

In order to evaluate how the proposed improvements impact the restoration per-
formance, new experiments have been conducted. In particular, the contribution of
the preliminary distortion parameter estimation step has been assessed by compar-
ing MdVRNet with the model trained without any additional information about
degradation operators, that is, the blind model using the noise map filled with zeros.
Besides, the contribution of the multi-scale restoration block has been measured
by comparing MdVRNet with FastDVDNet [28] using the information extracted
by the same DPEN model, thus preventing the difference in performance to be
attributed to errors in predicting the distortion parameters.
Regarding the training process, both MdVRNet and FastDVDNet [28] have been
trained using the training settings described in Section 5.3 and the same training
samples generated by adding additive white Gaussian noise with σ randomly ex-
tracted from the [5, 55] range to the clean frames and compressing the resulting
frames using the JPEG algorithm with a random q value in the [15, 35] range.
The performance obtained by MdVRNet in restoring videos corrupted by noise
and compression artifacts is reported in Table 5.10. As shown by the results in
the table, MdVRNet outperforms FastDVDNet [28] both when the artifacts are
mild and severe. More in detail, the multi-scale restoration blocks in MdVRNet
allow to improve the FastDVDNet [28] performance by about 0.35 dB and 0.01 in
terms of PSNR and SSIM [12], respectively. This improvement is quite constant
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for all the values of σ and q controlling the artifact intensity. This means that
the novel multi-scale restoration block allows MdVRNet to obtain better videos
than the ones obtained using FastDVDNet [28], both perceptually and in terms of
reconstruction error, regardless of the degradation severity.
The results of the investigation about the contribution that estimating the distor-
tion parameter has on the performance are reported in Table 5.11. As shown,

Table 5.11: Comparison between two MdVRNet models, i.e. the model using
the distortion parameters inferred by DPEN and the blind model, in restoring
videos simultaneously affected by additive white Gaussian noise (with standard
deviation σ) and JPEG compression artifacts (with quality factor q). The results
are reported as PSNR/SSIM [12]. Each cell is composed of two rows: the first one
represents MdVRNet using the information provided by DPEN, while the second
one represents the blind MdVRNet model.

σ q 15 20 25 30 35

10 31.861/0.881 32.886/0.900 33.592/0.912 34.111/0.920 34.484/0.924
31.776/0.874 32.830/0.893 33.527/0.904 34.014/0.913 34.375/0.916

20 31.600/0.874 32.479/0.889 32.984/0.897 33.306/0.902 33.561/0.906
31.444/0.868 32.266/0.880 32.732/0.887 33.042/0.893 33.257/0.896

30 31.083/0.857 31.725/0.869 32.049/0.874 32.266/0.878 32.431/0.881
30.883/0.852 31.457/0.860 31.784/0.866 31.984/0.870 32.107/0.873

40 30.495/0.838 30.931/0.847 31.154/0.851 31.309/0.854 31.425/0.857
30.277/0.831 30.652/0.839 30.864/0.844 30.998/0.847 31.075/0.849

50 29.776/0.816 30.140/0.823 30.288/0.826 30.408/0.829 30.501/0.831
29.564/0.810 29.868/0.817 30.006/0.820 30.100/0.822 30.162/0.824

using DPEN to provide MdVRNet with information about the distortion intensity
improves the performance. Indeed, PSNR improves by about 0.2 dB and SSIM [12]
by about 0.01 on average. More in detail, the improvement in PSNR is higher when
the artifacts are stronger, since in this case the average improvement is about 0.3
dB. This means that the use of DPEN is particularly useful to reduce reconstruction
errors when the distortions are severe. Concerning SSIM [12], the performance
improvement is constant for all the parameter values tested.
Qualitative results of MdVRNet are illustrated in Figure 5.10, which shows four dif-
ferent video frames corrupted by noise and compression artifacts (left) and restored
by the network (right). It is possible to see that most of the artifacts have been
removed from the distorted frames. However, there are still some problems related
to detail reconstruction. This issue is better exemplified in Figure 5.11, which
shows 64×64 patches extracted from the frames in Figure 5.10. As shown, the finer
details are not properly reconstructed during the restoration process. For instance,
the fine details in the third example, representing a lawn of grass, are confused
with noise and they have not been properly restored. It is worth pointing out that
the artifacts affecting the frames in the figure are very strong (σ = 50 and q = 15
in this case) and the examples have just the purpose of showing how the network
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Figure 5.10: Qualitative results of MdVRNet in restoring videos simultaneously
affected by additive white Gaussian noise (σ = 50) and JPEG compression artifacts
(q = 15). Distorted frames on the left, restored frames on the right.

behaves in extreme cases but, as reported in Table 5.10, decreasing the intensity of
the artifacts allows to obtain better results, both in terms of reconstruction error
and perceptually.
The computational time required by the proposed MdVRNet to restore video
frames of different resolutions on a Tesla P100-PCIE-16GB GPU is reported in
Table 5.12. As shown, although MdVRNet outperforms FastDVDNet [28] in terms
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Figure 5.11: Example of patches affected by additive white Gaussian noise (σ = 50)
and JPEG compression artifacts (q = 15) restored by MdVRNet. Distorted frames
on the left, restored frames on the center, ground truth on the right.

of effectiveness, it does not in terms of efficiency, as the latter is about three
times faster. This increase in computational time is caused by the full-resolution
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branch of the multi-scale restoration blocks. Indeed, working at full-resolution
considerably increases the number of operations to perform that, in turn, increases
the computational time. In addition, also the distortion parameter estimation step
performed using DPEN has a considerable impact on the overall computational
time. In fact, about 30% of the total time is dedicated to estimate distortion
parameters. The reason why such step takes so long is related to the strategy
adopted to process frames for the estimation of the degradation parameters. As
mentioned in Subsection 5.6.3, for more accurate estimations, the target frame is
decomposed into 64× 64 non-overlapping patches and each patch is processed by
DPEN, considering the average values as the final values. However, the number of
patches to be processed increases with frame resolution. Therefore, an alternative
strategy that avoids such patch decomposition may almost completely remove this
additional overhead.

Table 5.12: Comparison between the restoration time required by FastDVDNet
[28] and MdVRNet in restoring multi-distorted videos. The results are reported
in seconds. The computational time required by MdVRNet considers both the
time required for the distortion parameter estimation and the time required for the
actual restoration process.

Frame size FastDVDNet [28] MdVRNet (distortion parameter estimation + restoration)

256× 448 0.023s [43 FPS] 0.066s (0.016s+ 0.050s) [15 FPS]
480× 854 0.068s [14 FPS] 0.227s (0.073s+ 0.154s) [4 FPS]
720× 1280 0.135s [7 FPS] 0.490s (0.167s+ 0.323s) [2 FPS]

In conclusion, the experimental results demonstrated that MdVRNet outperforms
FastDVDNet [28] in restoring videos affected by multiple distortions, noise and
compression artifacts to be precise, thanks to the proposed improvements related
to both the degradation parameter estimation module, i.e. DPEN, specifically
devised for this task and the multi-scale restoration block allowing to extract
features at different scales and properly fuse them according to the importance they
have in reconstructing the target frame. However, MdVRNet is less efficient than
FastDVDNet [28], as the overall restoration process is about three times slower.
This is due to both the full-resolution branch within the multi-scale restoration
blocks and to the strategy adopted for the distortion parameter estimation using
DPEN.
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Chapter 6
Conclusions

This thesis addressed the problem of video restoration using convolutional neural
networks.
In the literature, several methods to deal with different video restoration tasks
have been proposed, and the most recent ones are based on deep learning due to its
incredible success in many computer vision tasks. However, although they are able
to produce high-quality results, they have been designed to restore videos affected
just by single distortions and they cannot be used to restore multi-distorted videos,
i.e. videos corrupted by multiple degradation operators.
To address this limitation, this thesis proposes a new deep neural network, called
Multi-distorted Video Restoration Network and abbreviated MdVRNet, which ex-
ploits some of the best components of state-of-the-art video restoration approaches
in order to effectively restore videos affected by multiple distortions.
The most promising methods for video restoration in the literature have been
critically analyzed under different aspects to better understand how they work,
the key ideas behind them and their basic components. This analysis allowed to
understand how the studied methods perform important operations, such as pixel
motion estimation and frame alignment, and to extract the building blocks so that
they can be assembled to build a new video restoration framework. It emerged that
all the video restoration methods can be divided into two classes based on how
they perform motion estimation and frame alignment, which can be done explicitly
using a specific module or implicitly by the network itself. In addition, another
possible distinction is between non-blind methods and blind methods: the former
exploit information about degradation operators, while the latter do not. Both the
classes have their own advantages and disadvantages.
Among the studied methods, a promising approach for video denoising, i.e. Fast-
DVDNet [28], has been selected as baseline model for further analysis. The best
characteristics of this network have been exploited for the design of MdVRNet.
MdVRNet is a two-stage restoration network that progressively aligns adjacent
frames, allowing to extract both spatial and temporal information from the target
frame and its adjacent ones. The first restoration stage pays more attention to
single pixel restoration, due to its limited temporal information, while the second
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restoration stage pays more attention to restoring local areas, as it has a more com-
plete vision of the scene. To make the restoration process more robust, an original
distortion parameter estimation module, called Distortion Parameter Estimation
Network and dubbed DPEN, has been devised and integrated within the framework
itself to provide it with information about the intensity of the artifacts affecting
the video sequence. In addition, a novel multi-scale restoration block allowing to
extract features at different scales using two parallel streams has been designed,
so that each stream can extract different but complementary features. More in
detail, the full-resolution stream learns fine pixel dependencies for finer detail
reconstruction, while the low-resolution stream learns coarse pixel dependencies to
make the most of the semantic in local areas. The features of these two streams
are then weighted according to their importance in reconstructing the target frame
using an attention mechanism and fused to obtain a degradation map, which is
finally subtracted from the degraded target frame to restore it.
Several experiments have been carried out with different purposes. First of all, the
flexibility of the baseline model in restoring videos affected by single distortions, i.e.
noise, blur and compression artifacts, has been assessed by comparing the network
with both traditional and deep learning approaches. As a result, FastDVDNet [28]
outperformed existing traditional methods in removing out-of-focus blur and also
existing deep learning methods in removing compression artifacts, demonstrating
its flexibility in being adapted to other tasks different from the one it is designed for.
Then, the adaptability of the network to perform video restoration even when videos
are corrupted by multiple degradation operators has been evaluated, considering
the artifacts introduced by noise/compression and blur/compression. Since there is
no method in the literature to deal with these artifacts simultaneously, the easiest
solution to remove them is that of using two artifact-specific models sequentially,
that is, the output of the first model is used as input to the second one. However,
the obtained results demonstrated that it is not a good solution, as the restored
frames still presented visible artifacts. Instead, FastDVDNet [28] properly trained
to remove a specific combination of artifacts allows to obtain much better results,
confirming that using a single model to jointly remove the artifacts is better than
using a cascade of two artifact-specific models. Experimental results focusing on
how the performance changes when the information about degradation intensity is
estimated by DPEN have shown that, when dealing with single distortions, using
no information is better than using approximated one. Conversely, when videos are
corrupted by multiple distortions, using the parameters estimated by DPEN leads
to an increase of the restoration performance, due to the additional complexity
of the artifacts introduced by multiple degradation operators. Motivated by the
promising results of FastDVDNet [28] in restoring multi-distorted videos and by
the interesting results obtained using DPEN to estimate distortion parameters,
MdVRNet has been trained and evaluated to remove noise and compression ar-
tifacts from videos. The obtained results have demonstrated that MdVRNet is
more effective than FastDVDNet [28] in restoring multi-distorted videos. Fur-
ther experiments have been carried out to better understand the contribution the
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additional distortion parameter estimation stage and the multi-scale restoration
block have on the restoration performance, and the obtained results have shown
that they contribute almost equally. However, although the proposed MdVRNet
outperforms FastDVDNet [28] in terms of effectiveness, it does not in terms of
efficiency, as it processes videos with a lower frame rate than the baseline model.
Such difference is due to both the full-resolution branch within the multi-scale
restoration blocks, which inevitably increases the computational time, and the
strategy adopted to estimate distortion parameters, which decomposes the input
frame into non-overlapping patches for more accurate estimations.
The main limitations of the proposed MdVRNet are the assumption of globally
distributed artifacts and the computational time required to perform the restora-
tion process, leading to several possible future developments. First, it would be
interesting to make MdVRNet spatially varying so that it can restore videos even
if the intensity of the artifacts is different in different spatial locations, i.e. noise is
stronger in dark regions, because in real cases the artifacts may not be globally
distributed within video frames. This indirectly means adapting the architecture
of DPEN to make it able to predict punctual or local values instead of global val-
ues. Moreover, network compression methods may be used to reduce the network
dimension without losing effectiveness, and further studies may be conducted to
understand how to increase the prediction accuracy of DPEN without decomposing
the target frame into patches, allowing to decrease the computational time of
the entire MdVRNet framework. Another possible future work may be that of
investigating other video compression algorithms, such as HEVC. Such methods
exploit temporal redundancies to increase the compression rate, but they introduce
new types of artifacts on which MdVRNet has never been tested.
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